

City of St. Albert

Final Report

Ray Gibbon Drive Functional Planning Study

RAY GIBBON DRIVE

Functional Planning Study

Final Report

April 28, 2009

Steve Melton, P.Eng. General Manager, Roadways Design and Construction April 28th, 2009

Accepted by:

Neil Jamieson, P.Eng. General Manager, Planning and Engineering Division April 29/09

Accepted by:

Bruno Zutautas, P.Eng. Regional Director, North Central Region

Mon Lake Director, Tochnical Standards Branch

PLANNING

Corporate Authorization

This document entitled "Ray Gibbon Drive Functional Planning Study" has been prepared by ISL Engineering and Land Services Ltd. (ISL) for the use of "City of St. Albert". The information and data provided herein represent ISL's professional judgement at the time of preparation. ISL denies any liability whatsoever to any other parties who may obtain this report and use it, or any of its contents, without the express written consent of ISL.

Shelly Moulds, P.Eng.

PERMIT TO PRACTICE

ISL Engineering and Land Services Ltd.

Signature

Date_

PERMIT NUMBER: P 4741

The Association of Professional Engineers, Geologists and Geophysicists of Alberta

Executive Summary

1. Introduction

Ray Gibbon Drive (formerly known as the West Regional Road) will ultimately extend from the north-western extent of the Edmonton's ring road (Anthony Henday Drive), at 137 Avenue in the south, up to Villeneuve Road (Highway 633) to the north. This roadway, which is currently functioning as a 2-lane arterial roadway west of St. Albert, has history that goes back to the 70's when plans for a west St. Albert bypass were first introduced. Construction of the first 2 lanes in both Stages 1 and 2 (between 137 Avenue and McKenney Avenue and between McKenney Avenue and Giroux Road) commenced in 2004 and was completed in 2007. During this time, the Province and the City began to look at the possibility of converting the arterial roadway to an ultimate 8-lane freeway. As an outcome of the meeting between Premier Ed Stelmach and the current mayor at the time, Mayor Paul Chalifoux on September 11, 2007, Alberta Transportation (AT) and the City of St. Albert (the City) completed an overall functional study (Ray Gibbon Drive Functional Planning Study, September 2008) that identifies the modifications required to convert the existing Ray Gibbon Drive from a two-lane arterial roadway to a freeway complete with interchanges at 137 Avenue, McKenney, Giroux, and Villeneuve Roads. This freeway, which the Alberta Transportation would assume responsibility of, would extend north beyond St. Albert and eventually connect with Highway 2.

Background

In the 1970's the City of St Albert and the Province planned to construct a high speed freeway on the western boundaries of the City. The Province secured 55 acres through River Lots 16 and 16A for the freeway. However, in the mid to late 1990's the City was advised that the road was no longer a priority for the Province and that the City, would be responsible for the full cost of any type of western boundary road. Due to continued development in the west sector of the community and the increasing congestion of St. Albert Road the City initiated the planning and construction of a 4-lane arterial road. This arterial was to provide relief for traffic travelling on St. Albert Road (Highway 2) and connect Anthony Henday Drive to Villeneuve Road with at-grade intersections at 137 Avenue, McKenney Avenue and Giroux Road. The arterial was designed to ultimately be a 4-lane divided roadway with a design speed of 70 km/h (60 km/h posted).

In 2001, when planning started in earnest, the roadway was divided into three sections to facilitate the staging of construction:

- Stage 1: Existing 137 Avenue to McKenney Avenue
- Stage 2: McKenney Avenue to Giroux Road with an at-grade CN Rail crossing
- Stage 3: Giroux Road to Villeneuve Road (shown on Exhibit 3).

Design and construction of Stage 1 commenced in 2004 with the construction of a bridge over the Sturgeon River closely followed by the roadway and drainage facilities between 137 Avenue and McKenney Avenue. Construction of this section was completed before discussions restarted between the City and AT, and consequently this was not designed nor constructed to ultimately become a freeway. However, detailed analysis demonstrates that Stage 1 can easily be converted to a freeway that meets Alberta Transportation standards.

Design and construction of Stage 2 commenced in 2006 and was completed in late 2007. During this period, the City and AT began to discuss the possibility of Ray Gibbon Drive becoming a new link between Morinville and the ring road (Anthony Henday Drive). Consequently, modifications to the City's original Stage 2 design plans were made where possible during final detailed design and construction to meet Alberta Transportation Standards.

Stage 3 design and alignment is near completion and meets all Alberta Transportation standards.

Design Standards

In order to convert Stages 1 and 2 Ray Gibbon Drive to an Alberta Transportation freeway standard with a design speed of 110 km/h it was necessary to revisit the Transportation Association of Canada (TAC) Geometric Design Guidelines used for the arterial and to review the Alberta Transportation Highway Design Guidelines for a freeway standard facility. A comparison is provided in Table 1 which outlines the design criteria for the existing arterial (UAD-27.4-70), and the proposed freeway (UFD-820.8-110/RFD-820.8-110) that needs to be achieved.

Table 1: Design Criteria

				Road Classification		
Design Crit	eria			UAD-29.4-70	UFD-820.8- 110	RFD-820.8-110
Design Speed (km/h)			70	110	110	
Horizontal	Minimum Co	urve Radius	(m)	190	600	600
Alignment Spiral Para		neter A		110	220	220
Superelevat	ione			0.06	0.06	0.06
	Crest k	Passing sig	ht distance	n/a	585	585
	Crest K	Minimum st	opping sight	22	100	100
Vertical	C/22 2/22 1	Minimum		25	60	60
Alignment	Sag k	Comfort minimum (Illumination sections only)		15	30	30
Decision sight distance (n		m)	270	330-430	330-430	
Stopping Sight Distance (m)			110	235	235	
Gradient - Desirable minimum %			3	3	3	
	Lane width (m)			2 @ 3.7	4@3.7	4@3.7
	Right shoulder width (m)			1	3	3
	Left shoulder width (m)			1	3	3
	Finished pavement width (m)			9.4	2 @ 20.8	2 @ 20.8
			Rural	n/a	n/a	23.2 (min)
Cross Section	Median widt	h (m)	Urban	n/a	7.8 with median barrier	n/a
	Ditch width -	Ditch width - rural (m)		n/a	n/a	4.0 (rounded)
	Side slope	Normal			6:1	6:1
	ratio	On fills - maximum			3:1 over 6.5m	3:1 over 6.5m
	Backslope	Normal			5:1	6:1
	Ratio	Maximum			3:1	3:1

and the rest appears of the rest of the re		Road Classification				
Design Crit	eria	UAD-29.4-70	UFD-820.8- 110	RFD-820.8-110		
Basic R/W Width (m)	Urban (minimum)	22.5	70	n/a		
	Semi-Urban	n/a	n/a	90		
Wioth (m)	Rural	n/a	n/a	100		
Cross Streets	Intersection Offset from Interchange Ramp Terminal	400m	400m	400m		

A summary of modifications to the horizontal and vertical alignment that should be made during the conversion of the arterial roadway into a freeway for Stages 1 and 2 of Ray Gibbon Drive is provided in Table 2 below.

Table 2: Design Differences

Cross-Section Elements	Arterial Standards	Freeway Standards	Modifications Required
Lane Widths	3.7m	3.7m	None
Shoulders (inside/outside) (m)	1/1	2/3 for 4-lanes 2.5/3 for 6- lanes 3/3 for 8-lanes	Existing shoulders can be widened during future construction
Cross-slopes	2.5%	2.0%	None
Superelevations	6%	6%	None
Curb and gutter	Barrier curbs	Semi- mountable/ Mountable	Existing curbs need to be replaced when speed is increased, estimated cost \$3M
Ditches	N/A	4m rounded (rural areas only)	None, part of future Stage 3 construction
Sideslopes	10:1	6:1	None
Shy lines	1.7m	2.8m	None, part of future widening to 8- lane construction
Allowable Posted Speed within Study Area	60 km/h	100 km/h	The Environmental Impact Assessment completed for Ray Gibbon Drive was completed using a posted speed of 60km/h. If AT wishes to increase the posted speed to 100 km/h, a new EIA will need to be completed.

In addition, the Province has requested that the crest curve near McKenney be flattened, even though the curve is not sub-standard. Flattening this curve would result in 400m of additional throw-away costs with reconstruction estimated at \$1,275,000.

4. Modifications/Exemptions Required

Areas that require design exemptions are discussed below:

Intersection Offset from Ramp Terminal on 137 Avenue The South Riel Area Structure Plan (ASP) was approved on September 18, 2007 with an intersection located 270m from the proposed interchange ramp terminal.

Changing an approved ASP has serious legal implications and this area is presently under construction. Detailed Synchro analysis has demonstrated that the proximity of the intersection will not negatively impact the operation of the interchange or the freeway.

Cross-section at 137 Avenue

Due to the status of construction of the South Riel ASP, a retaining wall will be designed along the northeast ramp.

Vertical Alignment at Station 7+491

The existing crest curve has a k=97, which does not meet the Stopping Sight Distance requirements for 110km/h. The Stopping Sight Distance for 110km/h is k=100. Improving this curve to meet standard will be a negligible improvement.

- Intersection Offset from Ramp Terminal on McKenney Avenue
 The Timberlea Area Structure Plan was approved on November 21, 2005 with an
 intersection located 330m from the proposed interchange ramp terminal.
 Changing an approved Area Structure Plan has serious legal implications.
 Detailed Synchro analysis has demonstrated that the proximity of the
 intersection will not negatively impact the operation of the interchange or the
 freeway.
- Intersection Offset from Ramp Terminal on Giroux Road

 The Northwest Urban Village Area Structure Plan and the North Ridge Area

 Structure Plan were approved on July 4, 2006 and January 19, 2004,
 respectively. The ASP's share an intersection located 270m from the proposed
 ramp terminal. Changing an approved Area Structure Plan has serious legal
 implications. Detailed Synchro analysis has demonstrated that the proximity of
 the intersection will not negatively impact the operation of the interchange or the
 freeway.

These modifications replace the deficiencies table originally submitted in July, 2007.

Costs to Convert the Arterial to a Freeway

On October 30, 2007, in a letter from Minister Ouellette to Mayor Crouse, the province committed to reimburse the City for the difference in construction costs between an urban arterial standard within a 22.5m right-of-way and a freeway standard right-of-way. To that end, the tables on the next page are cost comparisons for the two roads.

To clarify the differences in the designs and the stages, the following drawings have been included at the back of the executive summary:

- Plan and Profiles for the freeway alignment (PP-01 to PP-03)
- Original 2-lane Arterial for Stage III (Exhibit 3)
- Proposed 2-lane highway for Stage III (construction 2009) (Exhibit 7)
- Overall Right-of-way plan (Exhibit 6)

Reimbursement costs to the City from the Province are equal to \$45,418,000. Detailed cost estimates for each scenario have been included in Appendix H of this report.

Table 3: Costs Incurred (to date) by St. Albert in Construction of Ray Gibbon Drive

Scenario 1	Stage 1	Stage 2	Stage 3	Total Cost	City Responsibility	AT Responsibility
Construction - 2 lanes	\$9,802,900	\$5,982,900	\$11,510,900	\$27,296,700	\$27,296,700	
Storm	\$3,826,600	\$1,644,500	\$1,769,500	\$7,240,600	\$7,240,600	
Engineering	\$2,864,000	\$846,300	\$1,106,700	\$4,817,000	\$4,817,000	
ROW - 22.5 meters	\$496,000	\$835,000	\$1,877,700	\$3,208,700	\$3,208,700	
Subtotal	\$16,989,500	\$9,308,700	\$16,264,800	\$42,563,000	\$42,563,000	

Table 4: Estimated Future Costs to Secure All Land Requirements and Construct Stage 3

Scenario 2	Stage 1	Stage 2	Stage 3	Total Cost	City Responsibility	AT Responsibility
Construction -2 lanes	\$16,081,100	\$7,959,500	\$17,796,000	\$41,836,600	\$27,296,700	\$14,539,900
Storm	\$5,084,500	\$3,510,700	\$6,322,700	\$14,917,900	\$7,240,600	\$7,677,300
Engineering	\$4,205,400	\$1,490,800	\$2,097,300	\$7,793,500	\$4,817,000	\$2,976,500
ROW 22.5 meters	\$496,000		\$5,540,000	\$6,036,000	\$3,208,700	\$2,827,300
ROW Addt'l 22.5 meters	\$496,000		\$1,180,000	\$1,676,000	\$0	\$1,676,000
ROW Addt'l 33 meters	\$725,000	\$581,000	\$1,736,000	\$3,042,000	\$0	\$3,042,000
ROW Interchanges (4)	\$2,350,000	\$1,685,000	\$8,644,000	\$12,679,000	\$0	\$12,679,000
Subtotal	\$29,438,000	\$15,227,000	\$43,316,000	\$87,981,000	\$42,563,000	\$45,418,000

Table 5: Estimated Future Costs to Construct Remaining Lanes to 14+600

Additional Widening	Stage 1	Stage 2	Stage 3	Total Cost	City Responsibility	AT Responsibility
Widening to 4 lanes w/ bridge	\$107,980,000	\$60,782,000	\$117,850,000	\$278,412,000	\$0	\$278,412,000
Additional 2 lanes (6 lanes)	\$26,574,000	\$7,908,000	\$19,330,000	\$53,812,000	\$0	\$53,812,000
Additional 2 lanes (8 lanes)	\$20,442,000	\$8,936,000	\$19,919,000	\$49,297,000	\$0	\$49,297,000
Subtotal	\$154,996,000	\$77,626,000	\$157,099,000	\$381,521,000	\$0	\$381,521,000

Notes:

- 1. The land component for the first 22.5 meters in stage 3 is high due to the requirement to purchase 43 acres for a stormwater management facility.
- 2. The breakdown for the above is \$4,360,000 for storm and \$1,180,000 for the road.
- 3. The storm component is as well high in stage 3 as there is a requirement to extend the storm back into stage 2 which adds \$2.4 million to the costs.
- 4. Land costs in stage 3 are higher as well due to the requirement to purchase land locked lands between the road and the existing North Ridge subdivision. These remnant lands cost approx. \$3.3 million dollars.

6. Noise

Road noise is defined as the sounds generated by vehicles operating on a roadway. This includes, but is not limited to engine/exhaust sounds and road contact sounds. For construction or improvements of highways through urban areas, Alberta Transportation has adopted a noise level of 65 dBa Leq24. Using a 10 year planning horizon, the province is committed to providing noise mitigation measures above the 65 dBa Leq24 threshold.

ACI Acoustical determined that noise attenuation will be required along the east side of Ray Gibbon Drive, from Villeneuve Road to just south of McKenney Avenue as a result of the higher operating speeds, the increased traffic volumes, and the alignment moving within 100m of existing residential development.

7. Conclusion and Recommendations

Even though some of Ray Gibbon Drive was designed and constructed prior to Alberta Transportation and the City resuming discussions, detailed analysis shows that the roadway can be easily converted to a freeway. It is recommended that a new Environmental Impact Assessment, as well as procurement of all remnant pieces of land required for Stage 3 be completed within the next year to minimize costs and ensure right-of-ways are obtained. The City is requesting a total reimbursement for \$45,418,000 in 2008. This would include reimbursement of \$14, 332,000 for work already completed on the Province's behalf in Stages 1 and 2, and an additional \$31,086,000 to procure the remaining land in Stage 3 and construct the first two lanes for Stage 3. The additional \$31,086,000 being the difference between the costs the City would be required to expend on an arterial standard, on an adjusted alignment versus the costs to upgrade the road to the Provincial freeway standard on the ultimate alignment including all land procurement.

Table of Contents

Corporate Authorization Executive Summary

1.0	Intro	oduction	1
	1.1	Background	1
	1.2	Scope	2
2.0	Traf	fic Analysis	3
	2.1	Projected Traffic Volumes	3
	2.2	Freeway Lane Requirements	3 3 4
	2.3	Lane Requirements on Cross Streets	4
	2.4	Interchange Configurations	4
	2.5	Ramp Terminals	4
	2.6	Merges, Diverges, and Weaves on the Mainline	9
	2.7	Proximity of Intersections on Cross-Streets the to Interchanges	10
	2.8	Overall Traffic Analysis	12
3.0	Free	way Geometric Design	13
	3.1	The History of the Arterial Alignment	13
	3.2	Freeway Design Guidelines	14
	3.3	Horizontal Alignment	15
	3.4	Vertical Alignment	16
	3.5	Cross-Section Elements	17
	3.6	Summary of Modifications	18
	3.7	Modifications / Exemptions Required	19
	3.8	137 Avenue Interchange	19
	3.9	McKenney Avenue / Meadowview Drive Interchange	21
	3.10	Giroux Road Interchange	21
	3.11	Villeneuve Road Interchange	22
	3.12	Pedestrian Accommodation	23
4.0	Stru	ctures	25
	4.1	New Bridge File - 137 Avenue Interchange at 6+317	25
	4.2	Existing Bridge File - Sturgeon River Crossing at 7+653	26
	4.3	New Bridge File - Pedestrian Crossing Across the Sturgeon River	28
	4.4	New Bridge File - McKenney Avenue Interchange at 9+018	28
	4.5	New Bridge File - CN Rail Crossing at 9+955	29
	4.6	New Bridge File - Giroux Road Interchange at 10+448	31
	4.7	New Bridge File - Villeneuve Road Interchange at 12+506	32
5.0	Utilit	ly Impacts	34
	5.1	Pipelines	34
	5.2	Well Sites	35
	5.3	Power Lines and Street Lighting	36
	5.4	Telephone and Cable Television	37
	5.5	Existing Storm and Sanitary Sewers and Water Lines	37

April, 2009 Table of Contents

6.0	Drai	nage Design	38
	6.1	Stage 1 Drainage System	38
	6.2	Stage 2 Drainage System	38
	6.3	Stage 3 Drainage Systems	38
	6.4	Stormwater Management Facilities	39
7.0	Righ	nt-of-Way Requirements	40
	7.1	Required Right-of-Way	40
	7.2	Remnant Parcels	40
8.0	Geo	technical Impacts	42
	8.1	Interchange Location Assessment	42
	8.2	McKenney Avenue to Villeneuve Road	47
	8.3	Bokenfohr Landfill	47
	8.4	North of Villeneuve Road	47
9.0	Envi	ironmental, Historical and Noise Impacts	48
	9.1	Environmental Assessment	48
	9.2	Wetland Transfer	49
	9.3	Holden Landfill	49
	9.4	Bokenfohr Landfill	50
	9.5	Additional Testholes Required	53
	9.6	Historical Impacts	53
	9.7	Noise	53
10.0	Cos	ts to Convert the Arterial to a Freeway	56
11.0	Con	clusions and Recommendations	57
	11.1	Conclusions	57
	11.2	Recommendations and Suggested Timelines	58

Appendices

Appendix A	Plan and Profile Drawings
Appendix B	Structural Drawings
Appendix C	Traffic Analysis
Appendix D	Alignment Options Near Villeneuve
Appendix E	Geotechnical Report
Appendix F	Environmental Report
Appendix G	Noise Report
Appendix H	Cost Estimates
Appendix I	Mass Haul Diagram
Appendix J	Cross Sections
Appendix K	Detailed Right-of-Way Requests
Appendix L	Auto Turn Templates
Appendix M	Retaining Wall Profile near 137 Avenue
Appendix N	Provincial Operations and Development Control Plan
14.4	

April, 2009 Table of Contents

Tables		
Table 2.1:	Service Levels for Urban Freeways	3
Table 2.2:	Lane Requirements for Ray Gibbon Drive	4
Table 2.3:	Lane Requirements for the Cross Streets along Ray Gibbon Drive	4
Table 2.4:	Traffic Analysis of 137 Avenue Simple Diamond Interchange, AM Peal	k 5
Table 2.5: Table 2.6:	Traffic Analysis of 137 Avenue Simple Diamond Interchange, PM Peal Traffic Analysis of McKenney Avenue -Simple Diamond Interchange	
	AM Peak	5
Table 2.7:	Traffic Analysis of McKenney Avenue Simple Diamond Interchange PM Peak	6
Table 2.8:	Traffic Analysis of Giroux Road Parclo AB Interchange, AM Peak	6
Table 2.9:	Traffic Analysis of Giroux Road Parclo AB Interchange, PM Peak	7
Table 2.10:	Traffic Analysis of Villeneuve Road Simple Diamond Interchange, AM Peak	7
Table 2.11:	Traffic Analysis of Villeneuve Road Simple Diamond Interchange, PM Peak	8
Table 2.12:	Traffic Analysis of Giroux Road Parclo AB Interchange with Increased Traffic, AM Peak	8
Table 2.13:	Traffic Analysis of Giroux Road Parclo AB Interchange with Increased Traffic, PM Peak	9
Table 2.14:	Level-of-Service for Merges and Diverges with Eight Lanes	10
Table 2.15:	Level-of-Service for Weaving Sections on the Mainline	10
Table 3.1:	Design Criteria	14
Table 3.2:	Horizontal Curve Data	15
Table 3.3:	Vertical Curve Data	16
Table 3.4:	Shy Line Offsets	18
Table 3:5:	Design Differences	18
Table 7.1:	Right-of-Way Requirements	40
Table 8.1:	Typical Dynamically Cast-in-Place Pile Capacities	44
Table 11.1:	Future Action Items	58
Exhibits		
Exhibit 1	AM Peak Hour Volumes	
Exhibit 2	PM Peak Hour Volumes	
Exhibit 3	Original 2 Lane Concept	
Exhibit 4	Typical Cross - Sections	
Exhibit 5	137 Avenue Temporary Alignment	
Exhibit 6	Additional Right-of-Way Requirements	
Exhibit 7	Proposed 2-lane Highway for Stage III	

April, 2009 **Table of Contents**

1.0 Introduction

Ray Gibbon Drive (formerly known as the West Regional Road) will ultimately extend from the north-western extent of the Edmonton's ring road (Anthony Henday Drive), at 137 Avenue in the south, up to Villeneuve Road (Highway 633) to the north. This arterial roadway, west of St. Albert, has history that goes back to the 70's when plans for a west St. Albert bypass were first introduced. Ray Gibbon Drive has recently begun to take shape with the construction of Stages 1 and 2 of this roadway (between 137 Avenue and McKenney Avenue and between McKenney Avenue and Giroux Road) over the past three years. As an outcome of the meeting between Premier Ed Stelmach and the current mayor at the time, Mayor Paul Chalifoux on September 11, 2007, Alberta Transportation and the City of St. Albert (the City) have resumed work on identifying the modifications required to convert the existing Ray Gibbon Drive from a two-lane arterial roadway to a freeway. This freeway, which Alberta Transportation would assume responsibility of, would extend north beyond St. Albert and eventually connect with Highway 2. This report reviews and outlines in detail the modifications that are required to facilitate the conversion.

1.1 Background

ISL Engineering and Land Services (ISL) have been involved in the planning and design of Ray Gibbon Drive along the western periphery of St. Albert since 2001. The original conceptual plans featured a four lane arterial roadway within a 58m right-of-way with a design speed of 70km/hour. During the development of the functional plan, the right-of-way was widened to 78m to allow for greater long-term flexibility. ISL also prepared the design and oversaw the construction of the first 2-lane stage of the roadway from Anthony Henday Drive at 137 Avenue to McKenney Avenue in 2004 to 2007 and from McKenney Avenue to Giroux Road in 2007.

To demonstrate the viability of converting the arterial roadway into an eight-lane freeway, the City retained ISL to prepare conceptual plans to transform at-grade intersections on Ray Gibbon Drive to interchanges, develop typical cross-sections for an eight-lane 110 km/h freeway, identify ultimate road right-of-way requirements, and identify ultimate drainage and alignment requirements. Conceptual plans were prepared with interchanges located at Villeneuve Road, Giroux Road, McKenney Avenue, and at 137 Avenue (which was realigned to the north of its present location). As this planning work was being completed, the detailed design and construction of the first two stages of the arterial road was also being finalized, and modifications were made to the design and the construction to easily accommodate the future modification to a freeway standard roadway.

Alberta Transportation also commissioned ISL Engineering and Land Services at the same time to develop functional plans for the extension of Ray Gibbon Drive north from Villeneuve Road north to Highway 2, just south of Morinville. This report does not address that study.

1.2 Scope

This report details the following:

- The scope of physical work necessary to facilitate the ultimate conversion of the recently completed urban arterial, Ray Gibbon Drive to an 8-lane freeway meeting Alberta Transportation's standards. This analysis also includes the ultimate right-of-way requirements so that the land can be purchased to protect for the conversion of the mainline from arterial to freeway.
- The cost be for the ultimate long term eight lane cross section freeway throughout the entire length from Anthony Henday Drive to Villeneuve Road (Highway 633). These costs will include the costs of all the elements including roadways, interchanges, drainage, lighting, staging, environmental considerations etc.
- The different construction staging scenarios that exist to facilitate the conversion.
- Required actions to be completed by Alberta Transportation including recommended timelines to ensure interests are adequately protected.

The future eight lane freeway has been preliminarily designed to Alberta Transportation standards and includes the following:

- A traffic analysis determining the type and size of the interchanges and their configurations, as well as identifying the requirements for an eventual eight lanes of traffic.
- The freeway has been planned for a design speed of 110km/h with all elements of the freeway design identified and meeting the Alberta Transportation Highway Geometric Design Guidelines for horizontal and vertical curves, stopping and decision sight distances, ultimate cross-sections, etc.
- The freeway will tie in with the ultimate Alberta Transportation's plans for Anthony Henday Drive at the TUC, the potential future extension north of Villeneuve Road, as well as the City of St. Albert road network at 137 Avenue, McKenney Avenue, Giroux Road and Villeneuve Road. Interchanges should be developed to accommodate expected long-term traffic demand.
- An ultimate grade-separated CN crossing. Initial assessments of the structures required for this and the interchanges have been completed.
- Drainage of the interchanges will be gravity based, without any reliance on lift stations.
- An assessment of utility impacts.
- An initial geotechnical assessment.
- Initial environmental, noise and historical assessments.
- Opinions of probable costs for each of the individual elements of the project.

2.0 Traffic Analysis

A traffic analysis has been completed to determine the type and configuration of the interchanges at 137 Avenue, McKenney Avenue, Giroux Road and Villeneuve Road as well as the operation of Ray Gibbon Drive as a freeway. The following analyses were performed:

- Freeway lane requirements
- Cross street lane requirements
- Queuing at the ramp terminals
- Merge and Diverge requirements
- Weave requirements, and
- Proximity of intersections on the cross-streets to the interchanges

2.1 Projected Traffic Volumes

AT, in partnership with the City of Edmonton, maintains a regional traffic forecasting model for the greater Edmonton's region's transportation system and a west St. Albert bypass is included as part of this overall modelling. The long-range forecasts from the provincial 2.5 million population horizon model where used to assess the capacity requirements for Ray Gibbon Drive. The model provided PM peak hour volumes. AM volumes were derived by reversing the traffic movements and reducing the volumes by 5%. These volumes are shown in Exhibits 1 and 2 on the next page.

2.2 Freeway Lane Requirements

The data provided in Table 2.1 identifies the required service volumes by service level for an urban freeway with a design speed of 110 km/h:

Table 2.1: Service Levels for Urban Freeways

Number of	Service Volumes (veh/h) for LOS						
Lanes	Α	В	C	D	E		
2	1,230	1,940	2,820	3,680	4,110		
3	1,900	2,980	4,340	5,570	6,200		
4	2,590	4,070	5,920	7,500	8,310		
5	3,320	5.210	7,550	9,450	10,450		

Source: Exhibit 13-6 on page 13-13 of the Highway Capacity Manual 2000

Recent freeway planning by Alberta Transportation in the Edmonton area have strived to maintain a level of service "D" for ultimate long term traffic conditions and have in some cases accepted a service level "E". Accordingly, the same levels of service thresholds were applied to Ray Gibbon Drive.

On the basis of the projected traffic volumes illustrated in Exhibits 1 and 2, and the Level of Service thresholds identified in Table 2.1, the following lane requirements have been identified for a freeway standard Ray Gibbon Drive:

Freeway Segment	Projected Long Term Peak Hour Volume in PM Peak Direction	Total 2-Way Lane Requirements (for LOS D or better)	Estimated Level of Service
Anthony Henday Dr. to 137 Ave	5,050	6	D
137 Ave to McKenney Ave	5,600	8	С
McKenney Ave to Giroux Rd	4,800	6	D
Giroux Rd to Villeneuve Rd	3,800	6	С

Table 2.2: Lane Requirements for Ray Gibbon Drive

Ray Gibbon Drive has been ultimately designed for an eight-lane cross-section along its entire corridor and therefore will provide sufficient capacity for many years to come.

2.3 Lane Requirements on Cross Streets

The two-way volumes on the cross streets (from Exhibits 1 and 2) are shown in Table 2.3.

Table 2.3: Lane Requirements for the Cross Streets along Ray Gibbon Drive

Cross Street East		f RGD	West of RGD	
	AM Peak	PM Peak	AM Peak	PM Peak
137 Avenue	2,614	2,750	1,898	2,000
McKenney Avenue	1,901	2,000	1,190	1,250
Giroux Road	857	900	1,047	1,100
Villeneuve Road	2,899	3,050	3,233	3,400

Based on a lane capacity of 1,200 vehicles per hour per lane, the cross-streets will operate sufficiently with a four-lane cross section.

2.4 Interchange Configurations

Each of the three interchanges at 137 Avenue, McKenney and Villeneuve Road will be simple diamond interchanges. The interchange at Giroux Road will be a Parclo A-B, to provide more weaving distance between it and the interchange at McKenney Avenue.

2.5 Ramp Terminals

An analysis of the traffic operation at the ramp terminals of the above noted configurations were completed to determine acceptable level of service and to ensure that queuing does not back up and interfere with other traffic. The tables below show the volume to capacity ratios, the level-of-service (LOS), and the 95th percentile queue length for each movement during the peak hours calculated in Synchro. All turning movements are based on a single lane unless otherwise noted.

Table 2.4: Traffic Analysis of 137 Avenue Simple Diamond Interchange, AM Peak

Movement	v/c	LOS	Queue (m)
	West To	erminal	_
EB Through	0.80	C	94
EB Right	0.19	Α	0
SB Left (double)	0.62	С	84
SB Right	0.13	Α	0
WB Left	0.73	С	44
WB Through	0.32	В	35
	East Te	rminal	
EB Left	0.31	Α	15
EB Through	0.73	В	85
NB Left (double)	0.18	С	18
NB Right	0.03	Α	0
WB Through	0.26	A	21
WB Right	0.38	Α	7

Table 2.5: Traffic Analysis of 137 Avenue Simple Diamond Interchange, PM Peak

Movement	v/c	LOS	Queue (m)
	West Te	erminal	
EB Through	0.32	A	34
EB Right	0.10	Α	0
SB Left (double)	0.43	С	43
SB Right	0.10	A	0
WB Left	0.14	A	8
WB Through	0.58	A	45
	East Te	rminal	*
EB Left	0.60	В	52
EB Through	0.38	Α	41
NB Left (double)	0.44	С	34
NB Right	0.14	Α	0
WB Through	0.38	Α	8
WB Right	0.67	A	45

Table 2.6: Traffic Analysis of McKenney Avenue -Simple Diamond Interchange AM Peak

Movement	v/c	LOS	Queue (m)
	West Te	erminal	
EB Through	0.44	С	27
EB Right	0.71	A	21
SB Left (double)	0.31	В	31
SB Right	0.17	A	10

Movement	v/c	LOS	Queue (m)
	West Te	rminal	
WB Left (double)	0.75	C	65
WB Through	0.18	Α	14
	East Te	rminal	
EB Left	0.62	C	24#
EB Through	0.39	Α	23
NB Left (double)	0.14	Α	10
NB Right	0.46	Α	23
WB Through	0.64	В	49
WB Right	0.27	Α	14m

Note: The # footnote indicates that the volume for the 95th percentile cycle exceeds capacity. The m footnote indicates that volume for the 95th percentile queue is metered by an upstream signal.

Table 2.7: Traffic Analysis of McKenney Avenue Simple Diamond Interchange PM Peak

Movement	v/c	LOS	Queue (m)
	West Te	rminal	
EB Through	0.40	С	20
EB Right	0.14	Α	0
SB Left (double)	0.17	В	15
SB Right	0.07	Α	0
WB Left (double)	0.51	С	23
WB Through	0.45	В	52
	East Te	rminal	
EB Left	0.60	С	18
EB Through	0.35	Α	18
NB Left (double)	0.28	Α	27
NB Right	0.51	Α	0
WB Through	0.55	В	31
WB Right	0.24	A	0

Table 2.8: Traffic Analysis of Giroux Road Parclo AB Interchange, AM Peak

v/c	LOS	Queue (m)
West To	erminal	Maria de la companya della companya della companya della companya de la companya della companya
0.04	A	4
0.73	В	54
0.03	A	0
0.08	С	9
0.50	Α	40
0.21	В	41
	0.04 0.73 0.03 0.08 0.50	West Terminal 0.04 A 0.73 B 0.03 A 0.08 C 0.50 A

LOS	Queue (m)
erminal	
В	12
A	7
A	18
A	20
A	4
В	25
	erminal

Table 2.9: Traffic Analysis of Giroux Road Parclo AB Interchange, PM Peak

Movement	v/c	LOS	Queue (m)
	West To	erminal	· ·
EB Through	0.04	Α	6
EB Left	0.60	В	32
SB Right	0.13	A	9
SB Left (double)	0.07	С	9
WB Right	0.23	A	23
WB Through	0.38	В	55
	East Te	rminal	
EB Through	0.10	A	6
EB Left	0.15	В	11
SB Right	0.65	Α	37
SB Left (double)	0.58	В	53
WB Right	0.10	A	5
WB Through	0.24	В	16

Table 2.10: Traffic Analysis of Villeneuve Road Simple Diamond Interchange, AM Peak

Movement	v/c	LOS	Queue (m)
	West Te	rminal	
EB Through	0.50	В	53
EB Right	0.55	Α	0
SB Left	0.21	С	13
SB Right	0.06	Α	0
WB Left (double)	0.64	В	38
WB Through	0.29	A	0
-	East Te	rminal	-1
EB Left	0.45	В	24
EB Through	0.34	Α	0
NB Left (double)	0.42	С	21
NB Right	0.26	Α	0
WB Through	0.54	В	56
WB Right	0.03	Α	0

1

Table 2.11: Traffic Analysis of Villeneuve Road Simple Diamond Interchange, PM Peak

Movement	v/c	LOS	Queue (m)
	West Te	rminal	
EB Through	0.42	В	43
EB Right	0.28	Α	11
SB Left	0.22	С	13
SB Right	0.10	Α	0
WB Left (double)	0.63	С	35
WB Through	0.50	Α	45
	East Te	rminal	
EB Left	0.39	В	12
EB Through	0.39	A	33
NB Left (double)	0.80	С	66
NB _i Right	0.34	Α	0
WB Through	0.76	В	76
WB Right	0.03	Α	0

Some concerns were raised regarding the sensitivity of the volumes at Giroux Road. A sensitivity analysis was performed at Giroux Road to determine if a 25% increase in traffic would affect the overall operation of the interchange. The results are shown in Tables 2.12 and 2.13.

Table 2.12: Traffic Analysis of Giroux Road Parclo AB Interchange with Increased Traffic, AM Peak

Movement	v/c	LOS	Queue (m)
	West To	erminal	
EB Through	0.05	A	6
EB Left	0.85	В	136
SB Right	0.04	Α	0
SB Left (double)	0.11	D	16
WB Right	0.69	С	120
WB Through	0.30	С	89
	East Te	rminal	
EB Through	0.11	A	6
EB Left	0.32	В	9
SB Right	0.52	Α	32
SB Left	0.33	A	24
WB Right	0.11	Α	4
WB Through	0.58	В	28

Table 2.13:	Traffic Analysis of Giroux Road Parclo AB Interchange with Increased Traffic,
	PM Peak

Movement	v/c	LOS	Queue (m)	
	West To	erminal		
EB Through	0.05	A	5	
EB Left	0.74	В	50	
SB Right	0.20	В	11	
SB Left (double)	0.11	С	12	
WB Right	0.28	Α	73	
WB Through	0.47	В	79	
	East Te	rminal		
EB Through	0.11	В	8	
EB Left	0.20	С	20	
SB Right	0.72	A	81	
SB Left	0.67	В	124	
WB Right	0.15	Α	11	
WB Through	0.38	С	44	

The single movement at level-of-service "D" for the increased traffic scenario confirms that the Giroux Road interchange will operate at an acceptable level-of-service in the long-term even with an increase in traffic of 25%.

Therefore the interchange through roadways 137 Avenue, McKenney Avenue, Giroux Road and Villeneuve Road will operate at an acceptable level-of-service as configured with minimal queues that do not obstruct traffic on other legs of the interchange based on the traffic volumes provided.

2.6 Merges, Diverges, and Weaves on the Mainline

A merge and diverge analysis was completed using the Highway Capacity Software on the mainline of Ray Gibbon Drive to ensure that enough distance exists for vehicles to safely merge on and off of Ray Gibbon Drive from each of the interchange ramps. The merge and diverges from Anthony Henday Drive have not been included in the analysis since they are classified as a Major Merge and Major Diverge. The Highway Capacity Manual (HCM) classifies a Major Merge as an area in which two primary roadways, each having multiple lanes, merge together to form a single segment. Similarly, a Major Diverge is defined as an area that has a single segment that splits into two primary roadways, each having multiple lanes. Analysis of these areas is limited to confirming the capacity of each roadway on either side of the junction, which indicates that these areas will operate at an acceptable LOS.

The results of the merge and diverge analysis are shown below:

Ramp Location		Southbound		Northbound	
		AM	PM	AM	PM
Villeneuve	Diverge	Α	В	В	А
	Merge	A	В	В	В
Giroux	Diverge	A	С	В	Α
	Merge	Α	В	В	В
McKenney	Diverge	В	С	С	А
	Merge	В	В	В	В
137 Ave	Diverge	Α	С	С	В
	Merge	В	С	В	Α

Table 2.14: Level-of-Service for Merges and Diverges with Eight Lanes

Weave analysis was also completed to ensure sufficient weaving distance between the exit and entrance gores of two adjacent interchanges. Highway Capacity Software limits weave sections to a maximum of 750m. More than this is considered to be merging and diverging sections with a freeway section in between. The results of the weaving analysis using this method are shown below for the mainline. This analysis assumed that 10% of the ramp traffic would exit at the next interchange.

Table 2.15:	Level-of-Service for Weaving Sections on the Mainline

Location	Southbound		Northbound	
Location	AM	PM	AM	PM
Villeneuve		A		23333
	843m		852m	
Giroux				
	660m		654m	
	LOS C	LOS B	LOS B	LOS D
McKenney	1/			
37972093777224.	1751m		1736m	
137 Avenue				
	894m		788m	
Anthony Henday Drive		4	10000	

The southbound weave between Giroux and McKenney will operate at an acceptable level-of-service. The northbound will operate at LOS D, which is still acceptable in the long-term.

The Parclo AB creates a weave on the bridge with a LOS A for both peak hours, based on the 1986 TAC method for weaves on an interchange.

2.7 Proximity of Intersections on Cross-Streets the to Interchanges

Alberta Transportation has a standard offset of 400m from a ramp terminal to an intersection to ensure that the interchange is not negatively affected by queues at the local intersection. There are currently three proposed intersections that are within 400m of the proposed interchange ramps along Ray Gibbon Drive at Giroux Road, McKenney Avenue, and 137 Avenue. Long-term traffic analysis for the peak hours in Synchro 7 have indicated that the intersections will not affect the interchange ramp terminals (refer to Synchro printouts in Appendix C). Based on this analysis, design exceptions have

been requested at these locations. Decision sight distance for Ray Gibbon Drive exceeds 110km/h. Decision sight distance on the cross roads meets the minimum criteria for 60km/h.

2.7.1 Giroux Road

The North Ridge ASP is located north of Giroux Road and was approved by City Council on January 19, 2004. The south half of this ASP has been developed, except for a small parcel adjacent to Giroux Road. This area is intended for low to medium density residential and a park/stormwater facility. Access to this area is limited to two accesses along Giroux Road, the proposed intersection and one further east. There is no connection to the internal road network within the ASP.

The Northwest Urban Village ASP is located south of Giroux Road and was approved by City Council on July 4, 2006. This ASP is undeveloped, except for the Fire Hall that is located in the east corner along Giroux Road. Public access to this area is limited to the proposed intersection. Emergency access from the Fire Hall is located further east on Giroux Road.

The ASP's share an intersection on Giroux Road approximately 270m east of the of the ramp terminal for the Giroux Road interchange. Traffic analysis indicates that the intersection will operate at LOS A in the AM and PM peaks, with a maximum eastbound queue of 50m, assuming no left turn bay. This analysis assumes a 4-lane cross-section on Giroux Road and a 2-lane cross-section on the local road with left-turn bays.

2.7.2 McKenney Avenue

The Timberlea ASP is located east of the Ray Gibbon Drive between the CN Rail and the Sturgeon River and was approved by City Council on November 21, 2005. This ASP is currently undeveloped.

The ASP has an intersection located approximately 330m east of the ramp terminal for the McKenney interchange. Traffic analysis indicates that the intersection will operate at LOS B in the AM and PM peaks, with a maximum eastbound queue of 100m, assuming no left turn bay. This analysis assumes a 4-lane cross-section on McKenney and a 2-lane cross-section on the local road with left-turn bays.

2.7.3 137 Avenue

The South Riel ASP is located east of Ray Gibbon Drive was approved by City Council on September 18, 2007. This ASP is bordered to the west by Ray Gibbon Drive, to the south by the current 137 Avenue alignment (which will be closed once the Anthony Henday is constructed), to the east by the CN Rail line (approximately 675m from the east ramp terminal on Ray Gibbon Drive), and to the north by Levasseur Road. This ASP has mixed zoning with little industrial/commercial and residential proposed within its boundaries. Construction is scheduled for the spring of 2008.

The ASP has two intersections along 137 Avenue, located approximately 250m and 450m east of the ramp terminal for the 137 Avenue interchange. Traffic analysis indicates that the intersection closest to the interchange will operate at LOS B in the AM peak and LOS C in the PM peak, with a maximum eastbound queue of 60m, assuming a double left turn bay. This analysis assumes a 4-lane cross-section on 137 Avenue and a 4-lane cross-section (near the intersection) on the local road with left- and right-turn bays.

For discussion purposes, these intersections were combined together half way between Ray Gibbon Drive and the at-grade crossing of the CN line. The single intersection would operate at LOS C in the AM peak (2 movements at LOS D) and LOS D in the PM peak (with 1 movement at LOS D, 3 movements at LOS E, and 3 movements at LOS F). The maximum eastbound queue is expected to be 130m. As a single intersection operates with a much lower Level of Service than the proposed double intersection concept, the single intersection is expected to fail sooner.

2.7.4 Conclusion

The intersections identified in the ASP's along Ray Gibbon Drive will not affect the operation of the interchanges when constructed.

2.8 Overall Traffic Analysis

The traffic projections are based on the Provincial 2.5 million population model for the overall capital region. This model has been produced to provide some idea of global traffic volumes rather than at individual intersections/interchanges. As such, there is a fair level of uncertainty at this stage for actual turning movements at specific intersections/interchanges and therefore to provide an additional factor of safety the bridge structures and ramps have been planned with double left-turn bays to further increase the future capacity of the interchanges. The overall results of the traffic analysis are that Ray Gibbon Drive will operate at an acceptable level-of-service in the long-term for the 2.5 million population horizon.

3.0 Freeway Geometric Design

The following section outlines the requirements of Alberta Transportation to convert Ray Gibbon Drive from a 70km/h arterial roadway to a 110 km/h freeway. The new freeway section will require additional right-of-way than what has already been secured, due to the wider cross section and especially at the interchanges and a focus on different elements than the arterial section.

3.1 The History of the Arterial Alignment

In the 1970's the City of St Albert and the Province planned to construct a high speed freeway on the western boundaries of the City. The Province secured 55 acres through River Lots 16 and 16A for the freeway. However, in the mid to late 1990's the City was advised that the road was no longer a priority for the Province and that the City, would be responsible for the full cost of any type of western boundary road. Due to continued development in the west sector of the community and the increasing congestion of St. Albert Road the City initiated the planning and construction of a 4-lane arterial road. This arterial was to provide relief for traffic travelling on St. Albert Road (Highway 2) and connect Anthony Henday Drive to Villeneuve Road with at-grade intersections at 137 Avenue, McKenney Avenue and Giroux Road. The arterial was designed to ultimately be a 4-lane divided roadway (with capability of expansion to 6-lanes) with a design speed of 70 km/h (60 km/h posted).

In 2001, when planning started in earnest, the roadway was divided into three sections to facilitate the staging of construction:

- Stage 1: Existing 137 Avenue to McKenney Avenue
- Stage 2: McKenney Avenue to Giroux Road with an at-grade CN Rail crossing
- Stage 3: Giroux Road to Villeneuve Road (shown on Exhibit 3).

Design and construction of Stage 1 commenced in 2004 with the construction of a bridge over the Sturgeon River closely followed by the roadway and drainage facilities between 137 Avenue and McKenney Avenue. Construction of this section was completed before discussions started between the City and AT, and consequently this was not designed nor constructed to ultimately become a freeway. However, detailed analysis demonstrates that Stage 1 can be converted to a freeway that meets Alberta Transportation standards (see 3.2 below).

The connector roadway, McKenney Avenue was designed and tendered in 2006, between Ray Gibbon Drive and Lacombe Lake Park at Morgan Crescent in the City, crossing the CN track at the park and facilitating the future development of the Timberlea area according to the approved Area Structure Plan.

Another contract was tendered in 2007 to complete Stage 2 between McKenney Avenue and Giroux Road. At the same time, the City and Alberta Transportation were seriously discussing the possibility of Ray Gibbon Dive becoming a new link between Morinville and the ring road (Anthony Henday Drive). Consequently, modifications to the City's original design plans were made during final detailed design and construction to facilitate the roadways eventual conversion to a freeway in the future. These modifications included:

- Modification of horizontal and vertical alignments on Stage 2 to meet the future design speed of 110 km/h
- Providing a detoured alignment at the CN tracks to allow for the future construction of an underpass on the future alignment

- Shifting the horizontal alignment to the west between McKenney Avenue and Villeneuve Road to provide adequate space for future interchanges including a Parclo AB at Giroux Road and a diamond at Villeneuve Road
- Expanded road right-of-way where required to provide sufficient cutbacks.

Stage 3 design and alignment is near completion and meets all Alberta Transportation standards.

3.2 Freeway Design Guidelines

In order to convert Ray Gibbon Drive to an Alberta Transportation freeway standard with a design speed of 110 km/h it was necessary to revisit the Transportation Association of Canada (TAC) Geometric Design Guidelines used for the arterial and to review the Alberta Transportation Highway Design Guidelines for a freeway standard facility. A comparison is provided in Table 3.1 which outlines the design criteria for the existing arterial (UAD-27.4-70), and the proposed freeway (UFD-820.8-110/RFD-820.8-110) that needs to be achieved.

Table 3.1: Design Criteria

		Road Classification				
Design Criteria			UAD-29.4-70	UFD- 820.8-110	RFD-820.8- 110	
Design Speed (km/h)			70	110	110	
Horizontal	Minimum C	urve Radiu	s (m)	190	600	600
Alignment	Spiral Para	meter A		110	220	220
Superelevation e			0.06	0.06	0.06	
-		Passing s	sight distance	n/a	585	585
	Crest k	Minimum stopping sight		22	100	100
Vertical		Minimum		25	60	60
Alignment	Sag k	Comfort minimum (Illumination sections only)		15	30	30
	Decision sight distance (m)		270	330-430	330-430	
Stopping Sight Distance (m)			110	235	235	
Gradient - Desirable minimum %		3	3	3		
	Lane width (m)		2 @ 3.7	4 @ 3.7	4 @ 3.7	
	Right shoulder width (m)		1	3	3	
	Left shoulder width (m)		1	3	3	
	Finished pavement width (m)		9.4	2 @ 20.8	2 @ 20.8	
	Median width (m) Rural Urban		Rural	n/a	n/a	23.2 (min)
Cross Section			Urban	n/a	7.8 with median barrier	n/a
	Ditch width - rural (m)		n/a	n/a	4.0 (rounded	
	Side slope ratio	Normal			6:1	6:1
		On fills - maximum			3:1 over 6.5m	3:1 over 6.5m
	Ratio	Normal			5:1	6:1
		Maximum			3:1	3:1

		Road Classification		
Design Cri	teria	UAD-29.4-70 UFD- 820.8-110		RFD-820.8- 110
Basic R/W Width (m)	Urban (minimum)	22.5	70	n/a
	Semi-Urban	n/a	n/a	90
	Rural	n/a	n/a	100
Cross Streets	Intersection Offset from Interchange Ramp Terminal	400m	400m	400m

A typical cross-section is shown in Exhibit 4. Additional cross-sections are provided in Appendix J.

3.2.1 Stopping Sight Distance

Stopping Sight Distance is required along the entire roadway to allow a vehicle, travelling at the assumed running speed (the design speed) to stop before reaching a stationary object in its path. From Table B.2.3 of Alberta's Highway Geometric Design (HGDG), the minimum stopping sight distance is 235m for a design speed of 110km/h.

Stopping Sight Distance is achieved along the entire roadway, except at the vertical curve located at 7+491. This crest curve is marginally below the minimum design criteria, but will have negligible impacts. Changes are not recommended.

3.2.2 Decision Sight Distance

Decision Sight Distance is required in areas where drivers must make complex instantaneous decisions, when information is difficult to perceive, or when unexpected or unusual manoeuvres are required, such as at interchanges and intersections. From Table B.2.6 on Alberta's HGDG, the decision sight distance is 330m for a design speed of 110km/h. Decision Sight Distance is achieved at the interchanges for a design speed of 110km/h; however, posted speeds will need to be reduced to 90 km/h or less near the McKenney intersection until the interchange is constructed to meet Decision Sight Distance requirements around the Jersey barrier, if the roadway is widened to the inside at 6 lanes. In addition, while the roadway is signalized, it is unlikely that the posted speed would be more than 70 km/h.

3.3 Horizontal Alignment

Ray Gibbon Drive from Anthony Henday Drive at 137 Avenue to Villeneuve Road was designed with horizontal curves as shown in Table 3.2:

Table 3.2: Horizontal Curve Data

Station	Radius (m)	Spiral Data (A)
7+100	1400	290
9+600	1600	310
11+350	2000	350
13+100	2000	350

The first two stages (from 137 Avenue to Giroux Road) were constructed with these horizontal curves. The third stage has been designed with these curves but not constructed yet.

Ray Gibbon Drive

Project Ray Gibbon Drive

Cross Section 4 Lane - 8 Lane Staging

Figure No.

Exhibit 4

When the freeway is expanded to eight lanes, the intent is to widen to the centre by removing the wide median and replacing it with a median new jersey or F shaped barrier between the opposing traffic flows between 137 Avenue until the cross section becomes rural, just south of Villeneuve Road. The Jersey barrier proposed in the urban cross-section will reduce the driver's ability to see obstacles around the outside of horizontal curves and the requirements for stopping and decision sight distances discussed above were reviewed in these areas.

From Figure 8-3.9b of Alberta's HGDG, the lateral clearance requirements on a 1400m curve (smallest radius on the proposed alignment) is 4.93m. The ultimate cross-section provides 5.75m of lateral clearance from the Jersey barrier to the center of the inside driving lane; therefore, stopping sight distance is achievable along the entire alignment.

Using the formula on Figure B-3.9b of the HGDG, a minimum horizontal radius of 2,375m would be needed to accommodate intersections on curves for a design speed of 110km/h. If the McKenney Avenue interchange is not in place at the 6-lane stage (assuming widening to the inside), a maximum achievable posted speed of 90 km/h along Ray Gibbon Drive will be required near the intersection in the short-term to accommodate the lateral obstruction. Realistically, the posted speed would be 70 km/h until the signals are removed.

Stopping sight distance for 110km/h is achieved along the entire length of Ray Gibbon Drive. Decision site distance for 110km/h is adequate for exit ramps at the interchanges; however, it is only sufficient for 90km/h at the McKenney Avenue intersection. Ray Gibbon Drive should be posted at 70 km/h until the intersections are removed, which is consistent with normal practice for signalized intersections.

3.4 Vertical Alignment

Ray Gibbon Drive from Anthony Henday Drive at 137 Avenue to Villeneuve Road was designed with vertical curves as shown in Table 3.3:

Station	Crest/Sag	K Value
5+700	Sag	131
6+200	Crest	375
7+100	Sag	98
7+500	Crest	98
8+050	Sag	140
8+300	Crest	195
8+600	Sag	103
9+000	Sag	149
9+500	Crest	101
10+000	Sag	67
11+100	Crest	346
12+600	Sag	176

Table 3.3: Vertical Curve Data

The first two stages (from 137 Avenue to Giroux Road) were constructed with these vertical curves. The third stage has been designed with these curves but not constructed yet. The crest curve at 7+491 has a k value of 97.83 which is just short of the stopping sight distance requirements for 110 km/h of 100. However, this curve is already constructed and the positive benefits to modifying this vertical curve would be negligible.

3.5 Cross-Section Elements

3.5.1 Lane Widths

Stages 1 and 2 of Ray Gibbon Drive were constructed with 3.7m lanes, which meet Alberta Transportation standards for a design speed of 110 km/h. No changes are required.

3.5.2 Shoulders

Stages 1 and 2 of Ray Gibbon Drive were constructed with 1m shoulders. Alberta Transportation's standards require 2m inside shoulders and 3m outside shoulders at the 4-lane stage. These shoulders should be widened during twinning. Additional shoulder widening is required at the 6 and 8 –lane stages.

3.5.3 Cross Slopes and Superelevation

Stages 1 and 2 of Ray Gibbon Drive were constructed with a 2.5% cross slope and a superelevation of 6%. Alberta Transportation standards use a 2% cross slope and a superelevation of 6%. No changes are required.

3.5.4 Curb and Gutter

Stages 1 and 2 of Ray Gibbon Drive were constructed with barrier style curb and gutters, which is acceptable up to a design speed of 70 km/h. Semi-mountable or mountable curbs are required for higher speeds.

3.5.5 Ditches

Ray Gibbon Drive was originally designed as an urban arterial from 137 Avenue to Villeneuve Road. The plan was modified to transition to a rural cross-section between Giroux Road and Villeneuve Road to tie into the cross-section proposed to the north. The rural portion of the project was designed with a 4m rounded ditch bottom.

3.5.6 Sideslopes

Stages 1 and 2 of Ray Gibbon Drive were constructed with 10:1 sideslopes, which is sufficient in the urban areas. The rural section was designed with a 6:1 and a 5:1 backslope.

3.5.7 Shy Line Offsets

The shy line offset is defined as "the distance beyond which an object will not be perceived as an obstacle and result in motorists reducing speed or moving laterally away from the object". Median barriers and bridge railings should be placed beyond the shy line offset to ensure that the road operates at an acceptable level. The values in Table 3.4 were taken from Table 3.1.6.4 of the TAC manual. The HGDG does not identify shy line offsets requirements.

Table 3.4:	Shy Line Offsets

Design Speed (km/h)	Shy Line Offset (m)
130	3.7
120	3.2
110	2.8
100	2.4
90	2.2
80	2.0
70	1.7
60	1.4
50	1.1

The proposed cross-section along the mainline places the median 3.0m from the driving lane, which meets the shy line offset for a design speed of 110 km/h. However, the Sturgeon River Bridge was designed with a 2.0m outside shoulder and 2.0m inside shoulder. Refer to Section 4.2 for details on modifying the cross-section across the bridge.

3.6 Summary of Modifications

A summary of modifications to the horizontal and vertical alignment that should be made during the conversion of the arterial roadway into a freeway for Stages 1 and 2 of Ray Gibbon Drive is provided in Table 3.5 below.

Table 3:5: Design Differences

Cross-Section Elements	Arterial Standards	Freeway Standards	Modifications Required
Lane Widths	3.7m	3.7m	None
Shoulders (inside/outside) (m)	1/1	2/3 for 4-lanes 2.5/3 for 6-lanes 3/3 for 8-lanes	Existing shoulders can be widened during future construction
Cross-slopes	2.5%	2.0%	None
Superelevations	6%	6%	None
Curb and gutter	Barrier curbs	Semi-mountable/ Mountable	Existing curbs need to be replaced when speed is increased, estimated cost \$3M
Ditches	N/A	4m rounded (rural areas only)	None, part of future Stage 3 construction
Sideslopes	10:1	6:1	None
Shy lines	1.7m	2.8m	None, part of future widening to 8- lane construction
Allowable Posted Speed within Study Area	60 km/h	100 km/h	The Environmental Impact Assessment completed for Ray Gibbon Drive was completed using a posted speed of 60km/h. If AT wishes to increase the posted speed to 100 km/h, a new EIA will need to be completed.

In addition, the Province has requested that the crest curve near McKenney be flattened, even though the curve is not sub-standard. Flattening this curve would result in 400m of additional throw-away costs with reconstruction estimated at \$1,275,000.

3.7 Modifications / Exemptions Required

Areas that require design exemptions are discussed below:

Intersection Offset from Ramp Terminal on 137 Avenue
The South Riel Area Structure Plan (ASP) was approved on September 18, 2007 with an intersection located 270m from the proposed interchange ramp terminal.
Changing an approved ASP has serious legal implications and this area is

Changing an approved ASP has serious legal implications and this area is presently under construction. Detailed Synchro analysis has demonstrated that the proximity of the intersection will not negatively impact the operation of the interchange or the freeway.

Cross-section at 137 Avenue

Due to the status of construction of the South Riel ASP, a retaining wall will be designed along the northeast ramp.

Vertical Alignment at Station 7+491

The existing crest curve has a k=97, which does not meet the Stopping Sight Distance requirements for 110km/h. The Stopping Sight Distance for 110km/h is k=100. Improving this curve to meet standard will be a negligible improvement.

- Intersection Offset from Ramp Terminal on McKenney Avenue
 The Timberlea Area Structure Plan was approved on November 21, 2005 with an intersection located 330m from the proposed interchange ramp terminal.
 Changing an approved Area Structure Plan has serious legal implications.
 Detailed Synchro analysis has demonstrated that the proximity of the intersection will not negatively impact the operation of the interchange or the freeway.
- Intersection Offset from Ramp Terminal on Giroux Road
 The Northwest Urban Village Area Structure Plan and the North Ridge Area
 Structure Plan were approved on July 4, 2006 and January 19, 2004,
 respectively. The ASP's share an intersection located 270m from the proposed ramp terminal. Changing an approved Area Structure Plan has serious legal implications. Detailed Synchro analysis has demonstrated that the proximity of the intersection will not negatively impact the operation of the interchange or the freeway.

These modifications replace the deficiencies table originally submitted in July, 2007.

3.8 137 Avenue Interchange

3.8.1 Interchange Design

Plans are under development for the realignment of 137 Avenue to provide access to lands between Ray Gibbon Drive and Levasseur Road, north of Anthony Henday Drive. 137 Avenue will ultimate pass through the Lois Hole Park and connect to 215 Street at Highway 16. From discussions between the City of St. Albert and the Province, a final interchange location was confirmed at 6+317, which was as far south as possible while respecting the province's desire to maintain an 800m weaving distance to the Anthony Henday Interchange.

The 137 Avenue interchange is planned as a diamond type interchange with Ray Gibbon Drive remaining depressed and the cross street being elevated slightly due to natural topography to provide the necessary clearances.

The South Riel Area Structure Plan (ASP) was approved by City Council on September 18, 2007 and has some implications on the proposed interchange. First, to upgrade Ray Gibbon Drive and the interchange to provincial freeway standards additional land is required beyond the footprint identified in the ASP. With construction on this ASP underway, development is expected on these lots before the province takes over Ray Gibbon Drive. The Province has agreed to construct a retaining wall along the northeast ramp of the interchange to minimize impacts to the developer. The wall, located at the edge of the clear zone, with a 5m maintenance corridor provided along the property line (where required), preserves 0.96 acres of the ASP that would be required using traditional sideslopes. Based on the grading proposed by the developer, the retaining walls would reach a height of 3.4m.

Second, the ASP has proposed an intersection within 250m on the east ramp terminal at the Ray Gibbon Drive interchange, although Alberta Transportation would prefer a 400m separation between interchange ramps and other intersections, so that queuing at the interchange ramps does not impact the freeway. While the interchange design will require a design exception, the impacts will not negatively affect operation on the interchange at its ultimate capacity. Analyses of the future traffic impacts at this interchange indicate that this will not be an issue. Traffic analysis has determined that the intersection will operate at Level-of-Service (LOS) B in the AM and LOS C in the PM, with a maximum eastbound queue of 60m, assuming a double left turn bay. There will be a need for ongoing discussions between Alberta Transportation and the developers to finalize the future staging of this interchange.

3.8.2 Interchange Staging

As the interchange is not likely to be constructed for some time it is necessary to provide temporary access to Ray Gibbon Drive for the Riel Park area. As a first stage, an atgrade intersection has been proposed between 137 Avenue and Ray Gibbon Drive at the approximate location of the future interchange. Four intersection location options were developed in relation to the interchange location:

- North of the structure. Due to the timing of development, this option was not feasible.
- At the bridge site requiring a detour during the future construction of the interchange.
- Use the east ramp terminal to create a T-Intersection. Due to the timing of Lois Hole Park opening, this option was not feasible.
- South of the structure.

From discussions with Alberta Transportation, the City, and the developers, the option of south of the intersection was selected as the only viable option. At the time of this report, preliminary design of the intersection at Ray Gibbon Drive was underway. Construction of the temporary 137 Avenue connection between Ray Gibbon Drive and Riel Drive is anticipated in the spring of 2009. Exhibit 5 shows the proposed alignment for the temporary connection.

3.9 McKenney Avenue / Meadowview Drive Interchange

3.9.1 Interchange Design

The McKenney Avenue/Meadowview Drive interchange will ultimately be located at 9+087. The McKenney Avenue interchange is planned as a diamond type interchange with Ray Gibbon Drive remaining at the original ground elevation and the cross street elevated to accommodate underground drainage and to keep the interchange out of the 1:100 flood plain area for Big Lake.

To achieve the desired minimum 330m Decision Sight Distance required for the freeway, the southbound exit ramp at the interchange will need to be extend 180m north beyond a standard ramp length when the interchange is constructed. The weaving zone between Giroux and McKenney; will operate at LOS C and B, for the ultimate AM and PM peaks respectively.

The Timberlea Area Structure Plan (ASP) was approved by City Council on November 21, 2005. The ASP has an intersection located approximately 330m east of the ramp terminal for the McKenney interchange which is less than the Alberta Transportation standard offset of 400m. While the interchange design will require a design exception, the impacts will not negatively affect operation of the interchange at its ultimate capacity. Traffic analysis has determined that the intersection will operate at LOS B in the AM and PM peaks, with a maximum eastbound queue of 100m, assuming no left turn bay and this will not negatively affect the operation of the interchange.

3.9.2 Interchange Staging

An at-grade intersection between Ray Gibbon Drive and McKenney Avenue was constructed north of the original interchange alignment at 9+018 to allow the future construction of the interchange. However, the interchange location was shifted to the north to provide adequate offset distances from the ATCO pipelines that cross Ray Gibbon Drive at 8+640. As a result, a detour road will be required during the construction of the interchange.

Located just outside of the 1600m radius curve, the urban cross-section proposed for this area will create a lateral obstruction to this intersection at the six-lane stage if the interchange is not simultaneously constructed. Alternatively, the speed limit could be lowered to 90 km/h at this section until the interchange is put in place. From Figure B-3.9b of the HGDG, the lateral clearance for a six-lane cross-section (widening to the inside) is 5.75m, which corresponds to a Decision Sight Distance of 271m. With the addition of the 23m tangent section between the curve and the intersection, a distance of 293m is attainable. From Table B.2.6 of the HGDG, this corresponds to a design speed of 90km/h. Since urban style intersections are typically posted and operated at lower speeds, this will not create any problems. Once interchanges are in place, all ramp exits will meet the Decision Sight Distance requirements.

3.10 Giroux Road Interchange

3.10.1 Interchange Design

The Giroux Road interchange will ultimately be located at 10+448 and connects to the old McKenney Avenue alignment. Giroux Road occurs close to a high point in the natural ground along the alignment of Ray Gibbon Drive which will ultimately be excavated to provide a cut section through this area. Consequently, the Giroux Road

interchange may be constructed with Giroux Road close to grade and Ray Gibbon Drive below grade.

The Giroux Road interchange is planned as a Parclo AB type interchange with all ramps located north of the Giroux Road structure due to the proximity of the CN overpass. A diamond interchange was not feasible because of the elevation difference between the structures, the grades between the mainline Ray Gibbon Drive and Giroux Road and poor location of the ramp gore points.

The Northwest Urban Village ASP is located southeast of the Ray Gibbon Drive on Giroux Road. The North Ridge ASP is located to the west of Ray Gibbon Drive between Giroux Road and Villeneuve Road. The ASP's were approved by City Council on July 4, 2006 and January 19, 2004, respectively. The ASP's share an intersection on Giroux Road, approximately 270m east of the ramp terminal for the Giroux Road interchange. While the interchange design will require a design exception, the impacts will not negatively affect operation of the interchange at its ultimate capacity. Traffic analysis has determined that the intersection will operate at LOS A in the AM and PM peaks, with a maximum eastbound queue of 50m, assuming no left turn bay. Although this spacing is less than the provinces standard offset of 400m, this will not negatively impact the operation of the interchange.

3.10.2 Interchange Staging

As a first stage, Ray Gibbon Drive was constructed as an at-grade intersection with Giroux Road. During the interchange construction, a detour will be required to allow the mainline of Ray Gibbon Drive to be lowered. No detours of the alignment were planned as a first stage. The detour designs and construction will have to be completed at the time of the construction of the interchanges.

3.11 Villeneuve Road Interchange

3.11.1 Interchange Design

The third stage of Ray Gibbon Drive between Giroux Road and Villeneuve Road (Highway 633) has not yet been constructed and this allowed the development of some variation in the original design of the ultimate location of the Villeneuve Road interchange. The alignment of Ray Gibbon Drive was shifted from the City's proposed intersection to the west to accommodate an interchange at Alberta Transportation's request. Five alignment alternatives, were developed and one selected by Alberta Transportation as the best location for the interchange. Details of the five alignment options and the final selection are also provided in Appendix D.

The preferred alignment will pass through the existing farmstead in NE7-54-25-W4M. Villeneuve Road occurs close to a high point in the natural ground along the alignment of Ray Gibbon Drive which will ultimately be excavated to provide a cut section through this area. Consequently, the proposed tight diamond interchange at Villeneuve Road may be constructed with Villeneuve Road close to grade and Ray Gibbon Drive underneath. The elevation of Ray Gibbon Drive at this location has been set to allow gravity drainage to Carrot Creek to occur.

3.11.2 Interchange Staging

As a first stage, Ray Gibbon Drive will be constructed as a two-lane roadway with an intersection located at Villeneuve Road, refer to Exhibit 7. During the interchange construction, a detour will need to be developed to allow the mainline of Ray Gibbon Drive to be lowered. The detour designs and construction will have to be completed at the time of the construction of the interchanges.

3.12 Pedestrian Accommodation

In 1991, the City adopted the Red Willow Park, a multi-faceted open-space that occupies the Sturgeon River corridor from St Albert's east end to the shore lands along Big Lake in the City's west end. The focus has been to incorporate and upgrade existing parks and provide a continuous trail system along the river banks.

As part of the Ray Gibbon Drive arterial road project, trails from the Riel Recreation Area were connected to the Sturgeon River crossing, with a pedestrian pathway under the structure for access to Big Lake. Alberta Transportation discourages pedestrian accommodation within the highway right-of-way, except at grade-separated crossings, so the pathways parallel to Ray Gibbon Drive will need to be modified. These issues are discussed below.

3.12.1 Pedestrians on Bridge Structures

To ensure that pedestrians have access to both sides of Ray Gibbon Drive, pedestrian accommodation facilities have been included in the overall functional plan. Alberta Transportation currently constructs two types of facilities:

- Walkways are 2.5m wide and are allowed at interchanges
- Pathways are 3m wide (4.2m on structure) and are discouraged at interchanges

After reviewing the existing and proposed trail system for the study area, the following pedestrian accommodations will be required.

- A 3m multi-use trail crossing has been provided on the south/west side of Anthony Henday Drive at the re-aligned 137 Avenue crossing. It is recommended that this trail be continued on the north side on 137 Avenue to the interchange, where it should split into a walkway across the structure and a multi-use trail travelling to the proposed pedway (refer to Section 3.12.3).
- A multi-use trail within the Timberlea ASP travels parallel to Ray Gibbon Drive and connects to McKenney Avenue. A walkway is recommended across the south side of the interchange.
- To reduce pedestrian conflicts, a walkway on the south side of the Giroux Road interchange is recommended. Currently, there are no trails proposed in the immediate area.
- A multi-use trail within the North Ridge ASP travels to the southeast corner of the Villeneuve interchange. A walkway is recommended across the south side of the structure.

3.12.2 Pedestrian Accommodation Across the Sturgeon River

The Sturgeon River Bridge currently accommodates pedestrians on the east side of the structure. To meet the 110 km/h design standards, the lane configuration on the bridge will need to be modified, using up the walkway space (refer to Section 4.3). A separate pedestrian bridge structure crossing is required outside of the road right-of-way with a connection to the future trail proposed in the Timberlea ASP.

3.12.3 Proposed Multi-Use Trail Overpass

The developers of South Riel are considering a multi-use trail pedway across Ray Gibbon Drive between 137 Avenue and the Riel storm ponds. Through consultation with the developer, the pedway bridge is proposed at 6 + 540. This will allow for a direct connection to the South Riel ASP that will connect to the proposed trail system along 137 Avenue and the existing trail along Levasseur Road. The proposed overpass funding is outside the scope of this freeway project.

4.0 Structures

Preliminary structure outline drawings were completed for seven proposed bridge structures for the selected plan, and the following design parameters are evaluated and discussed below for each bridge structure to ensure that they met acceptable standards:

- Overall Proposed Structure
- Sight distance
- Geometrics
- Underpass versus overpass
- Possible span arrangements
- Geotechnical concerns
- Deck Drainage considerations
- Construction Staging
- Cost Estimate.

Refer to Appendix B for bridge drawings.

4.1 New Bridge File - 137 Avenue Interchange at 6+317

4.1.1 Proposed Structure (2° LHF Skew)

The proposed structure is based on a preliminary out to out length of 82.3m associated with the ultimate eight lane facility of Ray Gibbon Drive. It is necessary to construct the ultimate structure length in the initial four lane stage to avoid costly reconstructions. A preliminary two span structure with spans of 35.0m and 37.0m is being proposed. Refer to the preliminary structure outline drawing No. ST01.

The preliminary length maybe revised as required upon obtaining field survey information and an accurate reading on the skew angle during the design phase of the project. Assuming that the structure will consist of two spans, the longest being 37m, a tentative structure depth of 2.1m maybe used for preliminary design purposes.

4.1.2 Sight Distance

Sight distance for this tight diamond interchange does not meet the minimum requirements for a design speed of 70 km/h. Consequently, the proposed tight diamond interchange intersections must be signalized on opening day.

4.1.3 Geotechnical

The proposed out to out length of the structure is based on 2:1 headslopes. However, a geotechnical assessment will need to be undertaken during the detail design phase to verify the 2:1 assumption.

4.1.4 Deck Drainage

The structure is on a K37.6 vertical crest curve with a slight shift of the PVI to the east. The preliminary grades at the ends on the structure are 2.75% and 0.56%. Since the proposed grade at the east end of the proposed bridge is slightly less than the absolute minimum of 0.6%, the final profile of 137 Avenue may require a slight adjustment during detailed design.

4.1.5 Staging

The following staging sequence will likely apply at this interchange structure:

- Stage 1 will consist of a four lane arrangement on Ray Gibbon Drive with the ultimate length of structure constructed.
- Stage 2 the stage 1 Ray Gibbon Drive facility is expanded to the outside by one lane in each direction.
- Stage 3 the stage 2 Ray Gibbon Drive facility is expanded to the inside by one lane in each direction.

4.1.6 Estimated Construction Costs

Costs for the structure is estimated to be \$9.3M before contingency and engineering fees, based on 2008 dollars.

4.2 Existing Bridge File - Sturgeon River Crossing at 7+653

4.2.1 Existing River Bridge (Built 2004/2005)

Construction of the existing bridge was completed in 2007 by the City of St. Albert. The bridge consists of a three span arrangement with span lengths of 16m – 20m – 16m with an overall out to out length of 82.1m that is based on a 6° RHF skew. The headslopes are 3:1 due to the extremely poor geotechnical conditions at this site.

The bridge is on a tangent alignment with the super elevation run off at the south approach in advance of the structure.

The bridge currently has a 3.0m sidewalk on the east side that will need to be removed in the proposed four lane stage. The sidewalk will be accommodated on a separate structure located beyond the future right-of-way boundary on the east side of the existing structure. Refer to the preliminary structure outline drawings No. ST02 and ST03.

4.2.2 Proposed Construction

The proposal is to reconstruct the existing bridge to accommodate a future 4, 6 and 8 lane Ray Gibbon Drive facilities, without having major river works in every stage of reconstruction.

A staging sequence has been developed that requires major river works only in the 6 lane stage. The structure outline drawing for the Sturgeon River Bridge illustrates a possible staging sequence for the future proposed three stages of Ray Gibbon Drive. The next section of this report also briefly addresses the staging sequencing strategy.

Reconstruction of the structure in the 6 lane stage will reduce the amount of freeboard approximately 0.2m; however, we still maintain the required 1m of freeboard. In addition, there is no drift on this river.

4.2.3 Preferred Staging Sequence

Stage One - 4 lane stage (possibly required by 2015)

Construct a 4 lane facility by completing the super structure for the south bound carriageway and shifting the centerline on the bridge to the east by 1.9m, as shown on the structure outline drawing.

- Reconstruct the northbound carriageway by removing the sidewalk from the east bridge and constructing a separate pedestrian bridge to the east, as shown on the structure outline drawing. Refer to Section 4.3 for details on the proposed pedestrian crossing.
- All construction on the eastbound and westbound carriageways can be completed without constructing any works in the river.

Stage Two - 6 lane stage (possibly required by 2040)

At the 6 lane stage, interchanges will have been constructed at all the cross road intersections. It is a possibility that even in the 4 lane stage some of the interchanges may have already been constructed.

- With the interchange being constructed, the widening to 6 lanes of Ray Gibbon Drive at the Sturgeon River Bridge should preferably be to the outside, as shown on the structure outline drawing.
- The widening to the outside would require major river works to isolate the piers with coffer dams, etc.
- Transport Canada (NWPA), DFO, Alberta Environment and Alberta Sustainable Resources Development environmental approvals would be required well in advance with respect to the proposed river works for the 6 lane stage.

Stage Three - 8 lane stage (possibly required by 2070)

- At the 8 lane stage, widening of the existing Sturgeon River Structures would occur to the inside in both directions.
- The proposed in stream works would not be extensive since the foundation for the pier columns were constructed in the initial 2 lane stage.
- Environmental approvals would still be required, however, would not be as onerous as in the 6 lane stage. An assessment would be required to determine if the bridge should be replace instead of being modified due to it's age.

4.2.4 Sight Distance

Sight distance is adequate at the existing and proposed structures for all stages of construction.

4.2.5 Deck Drainage

The 0.7% grade on the existing and proposed structures exceeds AT's minimum of 0.6%. In any event, the grade lane is fixed across the existing and proposed structures and therefore the 0.7% grade will need to be accommodated for all stages of construction.

4.2.6 Geotechnical

The proposed out to out length of the existing and proposed structures is based on 3:1 headslopes. Thurber Engineering undertook extensive geotechnical testing at this site and produced a comprehensive geotechnical assessment and report for this river crossing. This geotechnical information is available for any further foundation work that is required at this site. In summary, the geotechnical conditions are extremely poor through this area and need to be addressed in extreme detail.

4.2.7 Estimated Construction Costs

Costs for reconstructing the different stages of the structure are estimated as follow:

- Stage one 4 lane stage \$4.4M
- Stage two 6 lane stage \$7.6M
- Stage three 8 lane stage \$3.6M

The above estimates are in 2008 dollars, before contingency and engineering fees.

4.3 New Bridge File - Pedestrian Crossing Across the Sturgeon River

4.3.1 Proposed Structure

The proposed structure consists of a preliminary out to out length of 161.0m which is based on a preliminary 3-span girder arrangement (32m – 70m – 32m). The proposal is to locate the structure beyond the proposed Ray Gibbon Drive right-of-way and at the same time retain as much of the existing sidewalk system as possible. The proposed bridge is on a tangent alignment that is offset approximately 50m to the east of the existing Sturgeon River Bridge, as shown on the attached structure outline drawing No. ST04.

By proposing a 70m center span on the bridge, the in stream river works required to construct the piers is minimized. Adjustments to the span arrangement may be required to provide the optimum solution. A tentative structure depth of 2.5m for the proposed 70m span is preliminary and will need to be verified at the preliminary engineering phase of this project.

4.3.2 Geotechnical

The proposed out to out length of the proposed structure is based on 3:1 headslopes. Thurber Engineering undertook extensive testing at this site and produced a comprehensive geotechnical assessment and report for this site. The information is available for any further foundation work that may be required at this site. The geotechnical conditions are extremely poor through this area; consequently, the additional foundation work required for the proposed sidewalk structure may require further test holes and assessment.

4.3.3 Environmental Approvals

Environmental approvals will be required from Transport Canada (NWPA), DFO, Alberta Environment (Code of Practice) and Alberta Sustainable Resource Development.

4.3.4 Estimated Construction Costs

Costs for the structure is estimated to be \$1.9M before contingency and engineering fees, based on 2008 dollars.

4.4 New Bridge File - McKenney Avenue Interchange at 9+018

4.4.1 Proposed Structure (14.1° RHF Skew)

The proposed structure is based on a preliminary out to out length of 101.9m associated

with the ultimate eight lane facility of Ray Gibbon Drive. It is necessary to construct the ultimate structure length in the initial four lane stage to avoid costly reconstructions. A preliminary two span structure with spans of 45.0m and 41.0m is being proposed. Refer to the preliminary structure outline drawing No. ST05.

The preliminary length may be revised as required upon obtaining field survey information and an accurate reading on the skew angle during the design phase of the project. Assuming that the structure will consist of two spans, the longest being 45m, a tentative structure depth of 2.4m may be used for preliminary design purposes.

4.4.2 Sight Distance

Sight distance for this tight diamond interchange does not meet the minimum requirements for a design speed of 70 km/h. Consequently, the proposed tight diamond interchange intersections must be signalized on opening day unless adequate signal distance is provided.

4.4.3 Geotechnical

The proposed out to out length of the structure is based on 3:1 headslopes. The proposed 3:1 headslopes may need to be flattened at this interchange due to the poor soil conditions through this area. A detail geotechnical assessment will be required prior to establishing the final slope. A flatter headslope will shift both ends of the structure closer to the intersections.

4.4.4 Deck Drainage

The structure is on a K58.8 vertical crest curve with the PVI offset to the west side. The preliminary grades at the ends of the structure are 0.64% and 2.38%. Since the proposed grade at the west end of the proposed bridge meets than the absolute minimum of 0.6%, the profile of McKenney Avenue is considered to be acceptable.

4.4.5 Staging

The following staging sequence will likely apply at this interchange structure:

- a) Stage 1 will consist of a four lane arrangement on Ray Gibbon Drive with the ultimate length of structure constructed.
- Stage 2 the stage 1 Ray Gibbon Drive facility is expanded to the outside by one lane in each direction.
- Stage 3 the stage 2 Ray Gibbon Drive facility is expanded to the inside by one lane in each direction.

4.4.6 Estimated Construction Costs

Costs for the structure is estimated to be \$11.5M before contingency and engineering fees, based on 2008 dollars.

4.5 New Bridge File - CN Rail Crossing at 9+955

4.5.1 Introduction

The proposed CN subway will be located within the City of St Albert limits on Ray Gibbon Drive at 9+955. The ultimate stage of Ray Gibbon Drive at the proposed crossing is on an R1600m horizontal curve. The proposed railway structure will be on a

tangent alignment except for about 20m on the west end. The CNR mainline is presently a single track through this area and is on a 0.8% grade through the crossing. The existing at-grade crossing at CNR Mile 6.70 Sangudo Subdivision consists of flashing lights, bell, and gates with a concrete surface.

4.5.2 Proposed Construction

The proposal is to construct a subway grade separation with a preliminary theoretical 84.1m out to out of fill length. The subway structure will need to accommodate an ultimate 8-lane urban freeway facility. Initially, only a 4-lane urban facility is required; however, the structure will need to be constructed to accommodate the ultimate 8-lane facility since it is a subway structure.

Maintaining rail traffic on this mainline track during construction of the subway will be essential. Consequently, a railway diversion around the site will be required to accommodate the construction of the subway structure. The railway diversion has been shown on the preliminary structure outline drawing to carry a temporary track around the construction site on the north side. This will need to be confirmed prior to detailed design of the subway commencing. An offset of approximately 25m from centerline of the subway structure to the centerline of the railway diversion is considered to be adequate in this preliminary phase.

The railway diversion will require that the existing at-grade crossing on the temporary road be relocated to the new temporary crossing, as shown on the attached structure outline drawing. A possible staging sequence to construct the subway is listed below:

- Construct the railway detour
- Construct the temporary at-grade crossing on existing Ray Gibbon Drive and the temporary detour, the existing crossing should remain in place
- > Shift train traffic to the detour
- Construct the subway structure
- Shift train traffic onto the subway structure and resume using the original atgrade crossing. Remove the railway detour and temporary at-grade crossing.
- Construct the first half (southbound lanes) of Ray Gibbon Drive, which may require retaining walls
- Shift the traffic from the temporary road onto the southbound lanes of Ray Gibbon Drive
- Construct the northbound lanes of Ray Gibbon Drive.

The proposed subway structure will require a center pier to reduce the length of the railway span. Based on the two 27m span arrangement, the preliminary overall depth of structure from the top of rail to the underside of the girder is estimated at 2.5m. CNR will need to be contacted to determine their requirements prior to more detailed plans being developed. Refer to the preliminary structure outline drawing No. ST06.

4.5.3 Railway Traffic

CNR have advised that there were 6 trains/day on average at this location in 2007, travelling at a train speed of 30 mph (48 km/h).

4.5.4 Cost Apportionment Strategy for Construction of a Future Grade Separation

CNR is senior at the existing at-grade crossing; consequently, the Road Authority is responsible for the maintenance of the crossing surface. If the crossing is in existence for three years, the crossing is considered to be established. With the construction of a

grade separation at any time after the crossing has become established, the railway are required to share in the construction costs. At this stage, it is our opinion that the minimum cost share from the railway would be 15% of the total basic grade separation costs even though the cross-product may be less than 200,000.

4.5.5 Project Approvals

A notice of works must be forwarded to the Railway, Transport Canada, the Canadian Transportation Agency, and the existing landowners in the four quadrants, the City, and Alberta Transportation.

Also, an agreement must be executed between CNR and the Province prior to construction of the grade separation commencing. A copy of the agreement must be filed with the Canadian Transportation Agency in Ottawa.

Submissions to the Canadian Transportation Agency may also be required if there are issues that require resolution by a third party.

4.5.6 Estimated Construction Costs

Costs for the structure, the railway detour, and the relocation of the at-grade crossing is estimated to be \$2.6M before contingency and engineering fees, based on 2008 dollars.

4.6 New Bridge File - Giroux Road Interchange at 10+448

4.6.1 Proposed Structure (2° LHF Skew)

The proposed structure is based on a preliminary out to out length of 103.4m associated with the ultimate eight lane facility of Ray Gibbon Drive. It is necessary to construct the ultimate structure length in the initial four lane stage to avoid costly reconstructions. A two span structure with spans of 45.0m and 47.0m is being proposed. Refer to the preliminary structure outline drawing No. ST07.

The preliminary length maybe revised as required upon obtaining field survey information and an accurate reading on the skew angle during the design phase of the project. Assuming that the structure will consist of two spans, the longest being 47m, a tentative structure depth of 2.4m may be used for preliminary design purposes.

4.6.2 Sight Distance

Intersection sight distance for this Parclo AB Interchange should be adequate on both sides. However, on the west side, the sight distance associated with the k 35.1 vertical curve needs to be confirmed for traffic turning easterly onto Giroux Road for the south to east movement upon determination of the final interchange geometrics, and parameters. On the east side, the sight distance is adequate due to the proposed 1.245% grade on the structure and approach road.

4.6.3 Geotechnical

The proposed out to out length of the structure is based on 2:1 headslopes. However, a geotechnical assessment will need to be undertaken during the detail design phase to verify the 2:1 assumption.

4.6.4 Deck Drainage

The structure is on a partial K35.1 vertical crest curve with the PVI offset to the west side. The preliminary grades at the ends on the structure are 0.22% and 1.25%. Since the proposed grade at the west end of the proposed bridge is less than the absolute minimum of 0.6%, the final profile of Giroux Road may require some adjustments during detailed design.

4.6.5 Staging

The following staging sequence will likely apply at this interchange structure:

- a) Stage 1 will consist of a four lane arrangement on Ray Gibbon Drive with the ultimate length of structure constructed.
- Stage 2 the stage 1 Ray Gibbon Drive facility is expanded to the outside by one lane in each direction.
- Stage 3 the stage 2 Ray Gibbon Drive facility is expanded to the inside by one lane in each direction.

4.6.6 Estimated Construction Costs

Costs for the structure is estimated to be \$13.9M before contingency and engineering fees, based on 2008 dollars.

4.7 New Bridge File - Villeneuve Road Interchange at 12+506

4.7.1 Proposed Structure (6° RHF Skew)

The proposed structure is based on a preliminary out to out length of 104.5m associated with the ultimate eight lane facility of Ray Gibbon Drive. It is necessary to construct the ultimate structure length in the initial four lane stage to avoid costly reconstructions. A two span structure with spans of 45.0m and 47.0m is being proposed. Refer to the preliminary structure outline drawing No. ST08.

The preliminary length maybe revised as required upon obtaining field survey information and an accurate reading on the skew angle during the design phase of the project. Assuming that the structure will consist of two spans, the longest being 47m, a tentative structure depth of 2.4m maybe used for preliminary design purposes.

4.7.2 Sight Distance

Sight distance for this tight diamond interchange does not meet the minimum requirements for a design speed of 70 km/h. Consequently, the proposed tight diamond interchange intersections must be signalized on opening day.

4.7.3 Geotechnical

The proposed out to out length of the structure is based on 2:1 headslopes. However, a geotechnical assessment will need to be undertaken during the detail design phase to verify the 2:1 assumption.

4.7.4 Deck Drainage

The structure is on a K69.6 vertical crest curve with the PVI offset to the east side. The preliminary grades at the ends of the structure are 1.88% and 0.61%. Since the minimum grade across the bridge will not be less than 0.6%, deck drainage is considered to be adequate.

4.7.5 Staging

The following staging sequence will likely apply at this interchange structure:

- a) Stage 1 will consist of a four lane arrangement on Ray Gibbon Drive with the ultimate length of structure constructed.
- Stage 2 the stage 1 Ray Gibbon Drive facility is expanded to the outside by one lane in each direction.
- Stage 3 the stage 2 Ray Gibbon Drive facility is expanded to the inside by one lane in each direction.

4.7.6 Estimated Construction Costs

Costs for the structure is estimated to be \$11.8M before contingency and engineering fees, based on 2008 dollars.

5.0 Utility Impacts

The following utilities were considered during this project:

- High and medium pressure gas pipelines
- > Well Sites
- > Electric Power
- > Telephone and cable television
- Existing storm and sanitary sewers
- Water lines.

5.1 Pipelines

There are numerous pipelines within the vicinity of Ray Gibbon Drive; there are three located near Villeneuve Road, and a multiple pipeline crossings at 8+640 near McKenney Avenue. Using the arterial alignment, the pipelines would have remained in place, below the roadway; however, these will now have to be relocated or abandoned as part of the construction of the interchange.

The Energy and Utilities Board (EUB) has a standard offset (for sour gas lines) of 15m plus the Emergency Planning Zone (EPZ) from pipelines. Alberta Transportation's Utility Guidance Manual has a standard offset of 30m from the edge of right-of-way, except at a crossing. At a crossing the minimum depth of cover over a pipeline where it crosses the right-of-way of a highway and within 30m each side of the boundary shall be 1.4m under the lowest point of the cross-section. There are two existing pipelines that will be affected by the expansion of Ray Gibbon Drive from a 4-lane arterial to an 8-lane freeway.

5.1.1 Gibson Energy Pipeline

The first pipeline, owned by Gibson Energy, crosses Ray Gibbon Drive at Villeneuve Road on the north of Villeneuve Road. Discussions between ISL and Gibson Energy have determined that the pipeline will be abandoned in the spring of 2008 and will therefore not be affected by the interchange construction. Future work will be required to ensure that Gibson removes the pipeline and obtains a Conservation and Reclamation Certificate to ensure that there has been no contamination to the adjacent soil prior to a licensing change through the ERCB. If contamination has occurred, Gibson will be responsible for processing the soil according to governing regulations, as long as they retain ownership.

5.1.2 Sifton Energy Pipeline

The second pipeline, owned by Sifton Energy, runs parallel to Ray Gibbon Drive for approximately 2km to access the well site discussed in Section 5.2. The pipeline currently crosses Villeneuve Road approximately 1.5m to 2m below grade and will have to be relocated. Sifton Energy developed two alternatives for the pipeline:

- Directional drill from a point on the existing right-of-way south of Villeneuve Road to a point on the existing right-of-way north of Villeneuve Road. To place the entry and exit locations beyond the required setbacks would require approximately 1.0km of new pipe and is estimated to cost \$0.5M.
- Obtain new right-of-way and re-locate the pipeline using conventional weld and ditch installation. This would require approximately 1.2km of new pipe and is estimated to cost \$0.25M, subject to land negotiations.

If the pipeline is still required to serve the well site prior to interchange construction, the pipeline should be relocated. A proposed realignment is shown on drawing PP03 (see Appendix A), but needs to be confirmed with detailed design prior to land acquisition.

5.1.3 ATCO Pipeline

A third pipeline, owned by ATCO Pipelines, crosses Ray Gibbon Drive at 8+640, south of McKenney Avenue. The existing crossing contains two 323mm and one 273mm high pressure natural gas pipelines, located approximately 2m below grade. No modifications to the pipelines themselves are anticipated at Ray Gibbon Drive; however, modifications to Crossing Agreement AP05/0727 will likely be required.

To the west of the interchange, McKenney Avenue travels across the pipeline right-ofway for approximately 400m. Although this is on the minor road, most of these pipelines would be buried under the interchange embankment, and is subject to Alberta Transportation guidelines.

To achieve the minimum 30m offset from the pipeline to the edge of road right-of-way, two options were considered:

- Relocate the 3 pipelines to meet the offset requirements. Due to the proximity of the storm pond located in the southwest quadrant of the McKenney Avenue interchange, the pipelines would need to be repositioned on the south side of the pond. Relocating approximately 1km of these pipes is expected to cost \$5M.
- Shift McKenney Avenue to the north to achieve the offset requirements. The realignment of the interchange requires a skewed bridge structure, some additional right-of-way, and the construction of a temporary detour road during bridge construction.

To ensure adequate right-of-way was identified by this study, Option 2 is shown on the plan and profile drawings. During detailed design, both options should be reviewed in greater detail.

5.1.4 ATCO Gas Pipeline

A fourth pipeline, owned by ATCO Gas, crosses Ray Gibbon Drive at approximately 12+490. The line is a small intermediate line that carrier polyethylene.

5.1.5 Gibson Oil Pipeline

A fifth pipeline, owned by Gibson Oil, used to run east-west on the north side of the CNR track and parallel to Giroux Road at 10+250. This pipeline was abandoned and removed from within the right-of-way during construction of Ray Gibbon Drive in the summer of 2007. Due to additional right-of-way requirements, more pipe may need to be removed prior to road construction.

5.2 Well Sites

There are two well sites that are within the vicinity of Ray Gibbon Drive. The first one is located at 9+850 near the CN rail crossing, and the second one is located at 12+000 near Villeneuve Road. Using the arterial alignment, the wells were offset 340m and 100m, respectively, from the road right-of-way.

The Energy and Utilities Board (EUB) has a standard setback of 40m from a well; unless the well is sour (produces H2S). If the well is sour, a minimum of 40m plus the Emergency Preparedness Zone (EPZ) is required. Alberta Transportation has a standard offset of 60m from the highway right-of-way.

The first well site is located on R.L.16, southwest of the CN Rail crossing, approximately 48m east of the highway right-of-way (prior to the CN Rail grade-separation). The site has two well heads, one owned by Daylight Oil that is suspended, and one owned by Imperial Oil that is abandoned. Daylight Oil has stated that their well will also be abandoned in 2008.

The second well site, owned by Sifton Energy, is located on NW7 54-25-W4M, approximately 72m west of the highway right-of-way. This is a sour gas well with an EPZ of 14m. Presently, Sifton does not operate under an operating agreement and has stated that they will keep the well active until it is no longer economical to do so. The well is within the minimum offset requirements for Alberta Transportation by 2m and this will need to be addressed during detailed design.

5.3 Power Lines and Street Lighting

5.3.1 Power Substation

A power substation, owned by Alta Link Management Ltd., is located on the northeast quadrant of the intersection of Ray Gibbon Drive and Villeneuve Road. Alberta Transportation's policy requires a minimum setback of 105 metres from the centerline of the median of a rural divided highway to the edge of the power substation right-of-way. Discussions with Alberta Transportation determined that a setback of 80m from the interchange ramp to the power substation was sufficient. The interchange at Villeneuve Road was designed to meet this criterion.

5.3.2 Transmission Line

There are currently three existing Trans Alta transmission lines that cross Ray Gibbon Drive. Alberta Transportation has a minimum offset of 30m from a transmission tower to the edge of highway right-of-way.

The first crossing, a 905L line located at 5+900, has towers 85m and 30m from the east and west right-of-way limits, respectively. No modifications are required.

The second crossing, a 747L line located at 6+920, has double poles 1m and 47m from the east and west right-of-way limits, respectively. The east pole will need to be relocated; however, the City, Sustainable Resources and Alta Link are currently examining the feasibility of relocating this line due to its proximity to Lois Hole Provincial Park. Any future relocation alternatives should respect the 30m offset requirements.

The third crossing, located at 10+450, is on double poles. This line will need to be relocated prior to interchange construction.

Vertical clearances will need to be confirmed at all three locations prior to construction.

5.3.3 Power Lines

There is power line that runs east-west on the north side of Villeneuve Road that will be

affected by the interchange construction. This line will need to be relocated prior to interchange construction.

5.3.4 Lighting

Street lighting for Ray Gibbon Drive was originally designed by Magna IV for a two-lane cross-section. The existing lighting will be sufficient for northbound lanes in the four-lane cross-section. The poles for the southbound lanes in the four-lane cross-section should mirror the northbound locations; however, the copper wiring for these poles should be placed in its ultimate 8-lane location. Street light standards will be mounted on galvanized screw anchor bases, which would allow the poles to be moved as the roadway is widened to its 6-lane configuration, reducing trenching costs. This would require the southbound lanes to be pre-graded with an additional lane in the four-lane cross-section.

At the 6-lane cross-section, for Stages 1 and 2, the northbound poles and underground wiring will have to be relocated to accommodate the additional lane. In the southbound direction, the screw based poles will be removed from the temporary location and refastened at the ultimate location. The wires to the temporary location will be pulled out of the conduit and re-feed up the poles, and the conduit to the temporary pole location will be abandoned. Minor adjustments to the lights/ballasts may be required to ensure adequate lighting for the additional lanes.

For Stage 3, the wires should be placed in their ultimate location with connections to the temporary pole locations for the 4-lane cross-section. Modifications for the six-lane stage will be similar to Stages 1 and 2. For all three stages, lighting within the center median will not be required until the 8-lane cross-section.

Improvements to the lighting plans have been included in the cost estimates based on 13m high galvanized poles with break-away bases with 2.5m davits and 310W copper lighting along the roadway and at the interchanges. High mask lighting is also possible within the corridor at the 6 and 8 lane cross-sections, but will require pre-planning to ensure that the bases are below grade early on.

5.4 Telephone and Cable Television

There is an existing telephone cable in the south ditch along the old McKenney Avenue alignment that will need to be addressed prior to interchange construction.

5.5 Existing Storm and Sanitary Sewers and Water Lines

There are currently no existing water, storm, or sewer lines that cross Ray Gibbon Drive. Future work for the Timberlea subdivision north of McKenney Avenue includes a number of utility crossings; however, these are all conceptual at this time and need to be developed to respect the ultimate vertical alignment of Ray Gibbon Drive. Sleeves should be considered at the crossing locations to reduce future disruptions.

6.0 Drainage Design

The Stage 1 drainage system for Ray Gibbon Drive, from 137 Avenue to McKenney Avenue, is designed for a four lane roadway in a 78m road right-of-way. The Stage 2 drainage system, from McKenney Avenue to Giroux Road, is designed to accommodate a six lane roadway with grade separation from the crest south of Villeneuve Road (approximate station 11+500). The drainage system for Stage 3, from Giroux Road to Villeneuve Road, has not yet been constructed. The ultimate proposed design for this roadway is eight lanes with grade separation and a larger road right-of-way. A review of the existing drainage systems was completed to determine what modifications or additions would be required to service the ultimate roadway design.

For Stages 1 and 2 the change in vertical clearance for the catch basins is 20.1cm. If necessary a higher grade pipe could be used on the extension or the pipe could be insulated.

6.1 Stage 1 Drainage System

The existing Stage 1 urban drainage system does not have enough capacity to accommodate flows from the ultimate proposed roadway. To accommodate these flows it is recommended that the existing drainage system be left in placed and drain the future northbound lanes. The 100 year storm event data was used for the calculations for the existing system and for the proposed system.

A second urban storm system is proposed to be constructed to drain the future southbound lanes. Catch basin manholes were constructed on the future east lip of gutter to drain the pre-graded area. When the second storm system is installed these catch basin manholes will be required to be disconnected from the existing storm system and removed. The new system will range in pipe sizes from 375 to 1200mm. The basin, approximately 400m south of McKenney Avenue, located between stations 8+060 to 8+900 is unable to accommodate the flows from the northbound lanes due to the added catchment area from the proposed interchange and ramps at McKenney Ave and Ray Gibbon Drive as such any runoff north of MH402 is required to directed toward the second drainage system.

6.2 Stage 2 Drainage System

Currently the existing Stage 2 drainage system is constructed to MH115 just south of the railway tracks. This system was designed for a 78m road right-of-way, 6 lanes and grade separation. With the addition of road right-of-way and two more lanes this pipe system reaches capacity in three pipe segments between manholes 114 to 117. These pipe segments do not meet the design standards and are at 101, 102 and 105% capacity respectively. As these pipes are already constructed it is recommended that they remain in place. In a large storm event these pipes may surcharge. This is not anticipated to be an issue but the hydraulic grade line should be checked.

6.3 Stage 3 Drainage Systems

The road south of the crest located at approximately 11+500 will drain through an urban system and tie into the Stage 2 system that is currently constructed. As this system has not yet been constructed there are no issues anticipated with its construction. It should be noted that a sanitary trunk sewer is proposed to cross the road right-of-way just north of the railway tracks at approximately station 10+185.

The road south of the crest is proposed to be a rural cross section with ditch drainage. The sag in the profile is located near the interchange at Villeneuve Road. Runoff from the interchange ramps and other portions of road will be conveyed through culverts to an inlet location where the water will enter a pipe system connected to a storm water management facility located to the southwest of the interchange. It should be noted that this pipe system will cross the Sifton Energy Gas Line. An outfall to Carrot Creek is proposed.

6.4 Stormwater Management Facilities

Currently three stormwater management facilities are constructed; Riel Wetland, Stage 1 North Pond, and Stage 2 Big Lake Pond. As the catchment areas for all of these ponds increases the settings on the release gates should be adjusted. A review of each facility's capacity was completed to determine the impacts of the proposed roadway.

Riel Wetland will not require any major adjustments due to the increased areas. The high water level for East Riel will be increase to 652.69m (+0.06m) and West Riel will be increase to 650.46m (+0.01m). No adjustment to the orifice openings will be required.

The Stage 1 North Pond will require the Gabion Weir to be raised by 0.25m to accommodate a 1-in-2 year storm event and a 100 m³ spill. With this adjustment, the new high water level in the fore bay will be 652.59 (+ 0.33m) and the pond high water level will be 652.50m (+0.26m).

The Stage 2 Big Lake Pond will not require any modifications, however during a 1:100 year storm event the gabion weir will overtop. A 1-in-2 year storm and 100m³ spill will still be isolated in the fore bay. For a 1:100 year storm the new high water level will be 653.56m.

The proposed Stage 3 pond will require a fore bay storage volume of 6,900m³ and a pond storage volume of 20,900m³. The minimum normal water level that may be used is 676.2m. This elevation is based on the design of the outlet.

7.0 Right-of-Way Requirements

7.1 Required Right-of-Way

The additional right-of-way needed to upgrade Ray Gibbon Drive to a freeway, with interchanges, is listed in Table 7.1 and shown on Exhibit 6. Detailed right-of-way requests are included in Appendix K. Costs are based on an assumed rate of \$247,100/ha.

Table 7.1: Right-of-Way Requirements

Land Description	Area Required (ha)	Land Costs
NW 29-53-25-W4	0.32	\$79,072
NE 29-53-25-4	2.15	\$531,265
Powerline ROW Plan 2648 MC	0.09	\$22,239
Plan 082 8697 - Blk 2 - Lot B	0.85	\$210,035
Lot A - Block 1 - Plan 082 8697 (Hole's)	0.07	\$17,297
Lot A - Block 1 - Plan 082 8697 (without Hole's)	0.80	\$197,680
R.L. 55	1.62	\$400,302
LOT 1 - Plan 842 0559	0.03	\$7,413
LOT H - 6525 NY	0.09	\$22,239
PARCEL B - Plan 3032 RS	9.2	\$2,273,320
R.L. 16	7.21 +2.76 +1.34	\$2,794,701
R.L. 16 for CN Detour	0.43	\$106,253
PARCEL A - Plan 3032 RS	0.94	\$232,274
Plan 992 6483 - Lot 4	0.01	\$2,471
Plan 992 2031 - Block 1B	0.01	\$2,471
Plan 932 1471 - Lot A	0.25	\$61,775
Block C - 1798 AN	0.15	\$37,065
NW 6-54-25-4	16.2	\$4,003,020
NE 6-54-25-4	0.05	\$12,355
SW 7-54-25-4	13.34	\$3,296,314
Block 1 - Plan 952 1983	0.19	\$46,949
NE 12-54-26-4	0.11	\$27,181
NE 7-54-25-4	0.40	\$98,840
NW 7-54-25-4	36.87	\$9,110,577
SW 18-54-25-4	0.39	\$96,369
LOT 1-Block 1 - Plan 042 6146	9.79	\$2,419,109
LOT 2 - Block 1 - Plan 042 6146	3.97	\$980,987
Lot 1 - Block 2 - Plan 052 5581	2.24	\$553,504
Power Sub-Station Site R/W - Plan 762 0332	0.32	\$79,072
SE 18-54-25-4	0.79	\$195,209

7.2 Remnant Parcels

In addition to the right-of-way listed in Table 7.1, there are some parcels of land that will have to be purchased as part of the Ray Gibbon Drive project.

7.2.1 Properties between Giroux Road and Villeneuve Road

The provision of a Parclo AB interchange at Giroux Road and a minimum offset from the power substation at Villeneuve Road creates a 11.35ha remnant parcel between the freeway and the North Ridge subdivision immediately to the east. Access to this parcel was originally accommodated for in the North Ridge Area Structure Plan; however, if the remnant parcel of land is not developable (refer to Bokenfohr landfill in Section 9.4), this access may be removed and the parcel would become land locked. Due to the required noise wall/berm in this area, the right-of-way has been included to be purchased.

7.2.2 Parcels North of Villeneuve Road

The provision for the power substation offset at Villeneuve Road creates three remnant parcels to the north. Access to these parcels is provided via a service road, but will have limited development opportunities unless they are incorporated into the site plan with SE 18-54-25-4 and NE 18-54-25-4.

8.0 Geotechnical Impacts

Many geotechnical studies have been undertaken for this area these include:

- West Regional Road Over Sturgeon River Geotechnical and Environmental Investigation, 2003, Thurber Engineering Ltd.
- West Regional Road Over Sturgeon River Approximate Limit of Former Landfill, 2004, Thurber Engineering Ltd.
- West Regional Road Alignment Soil Survey North of 137 Avenue Additional Geotechnical Investigation, 2005, Thurber Engineering Ltd.
- Leachate Level Monitoring in St Albert at the West Regional Road During Road Construction, 2006, Thurber Engineering Ltd.
- Proposed Grade Widening, Geotechnical Assessment and Design of Permanent Erosion and Sedimentation Control Plan, West Regional Road, Stages 2 and 3, Meadowview Road to Villeneuve Avenue, 2007, EBA Engineering Consultants Ltd.
- Holden Landfill Assessment (SW Sec 18-54-25-W4M) North of Villeneuve Road, St Albert, 2007, EBA Engineering Consultants Ltd.
- Preliminary Geotechnical Assessment for the West Regional Road North Extension, North of St Albert to Morinville Road Network Review, 2006, Thurber Engineering Ltd.
- Proposed Storm Water Pond Geotechnical Assessment for the West Regional Road, South of Meadowview Road, 2007, EBA Engineering Consultants Ltd.

The following section discusses areas that require additional work to convert Ray Gibbon Drive to a freeway.

8.1 Interchange Location Assessment

EBA Engineering completed a geotechnical assessment for each interchange site as part of this study. A brief discussion of each of the proposed structures (overpass or underpass) are presented below with a summary of the major geotechnical issues and concerns that need to be addressed for the design of the structure. It is recommended that additional geotechnical work will be undertaken prior to finalizing design for the structures. For details see the original geotechnical report, included in Appendix E.

8.1.1 Sub-Surface Conditions

Assuming that the all the waste is removed from the landfill site located north of Villeneuve Road, there are no significant development issues at this site. Subsurface conditions at Giroux Road are also considered favourable for the proposed structure with no major concerns associated with development at this location.

The two southerly proposed interchange locations are dramatically different than the two northerly locations. At the 137 Avenue and McKenney Avenue locations the subgrade is primarily silt and sand, and bedrock or a competent bearing strata was not encountered. Foundations at these two locations will likely comprise relatively long friction piles. Due to the soft silt identified at all four locations, there is a concern with long-term settlement associated with the placement of the approach fills, particularly at McKenney Avenue. It is likely that the use of wick drains or similar methods of accelerating consolidation settlement will be required at McKenney Avenue to dissipate pore pressures, which is similar to the approach adopted for the Sturgeon River Bridge.

Driven steel piles are currently used for most Alberta Transportation bridge structures. Driven steel, dynamically cast-in-place concrete and cast-in-place concrete piles are considered feasible foundation types for the proposed bridge structures at Villeneuve Road and Giroux Road. At 137 Avenue and McKenney Avenue driven steel piles are likely the most feasible considering the subsurface conditions. Preliminary recommendations for these pile foundation options are presented in the following sections.

8.1.2 Cast-in-Place Concrete Piles

Cast-in-place concrete piles are a common foundation type used in the Edmonton area and are presented as feasible foundation alternatives for the proposed structures at Villeneuve Road and Giroux Road. Piles may be designed on a combination of both skin friction and end bearing.

At Villeneuve Road end bearing belled piles could be installed in the glacial clay till at a depth of approximately 9 m. However, the underlying bedrock is at a depth of 10.5 m and would provide much higher end bearing for cast-in-place concrete piles. It is believed that a rock socket pile within the bedrock with end bearing at a depth of 13 m would also provide a cost effective foundation option. The silt layer overlying the clay till may generate some problems and could require temporary casing during pile installation to a depth of approximately 8 m.

At Giroux Road a very stiff to hard clay till stratum was identified at a depth of 6 m. The upper portion of the clay till was hard in consistency. Below 15 m, the clay till becomes softer in consistency, but still provides a good bearing strata. It is envisaged that belled piles founded at a depth of approximately 9 m below grade would provide the most economical foundation option.

In areas where new fill material will be placed for approach fills, or if any existing fill materials are left in place, negative skin friction will need to be addressed in the pile design.

Bell diameters should be a minimum of two and a maximum of three times the shaft diameter. The ratio of the depth to bell base and bell diameter should be a minimum of 2.5.

Design for belled piles may consider both end bearing and shaft friction. Shaft friction should be neglected for the top 1.5 m of the pile length and within one shaft diameter above the top of the bell.

Bell formation may be difficult within the bedrock stratum. Therefore, if end-bearing resistance is necessary to support the downward loading and belling is not possible, a special cleaning bucket should be used to clean the bottom of a straight shaft pile bore in the bedrock stratum, creating a "rock-socket" pile. It should be noted that the end-bearing diameter of the base of a rock-socket pile is slightly smaller than the shaft diameter. In calculating the end-bearing area for a rock-socket pile, a pile base diameter that is 5 percent smaller than the shaft diameter should be adopted.

The bases of all end-bearing piles must be thoroughly cleaned of all loosened material by mechanical or, if necessary, hand methods. Following drilling and cleaning, pile bores should be inspected to ensure that an adequate bearing surface has been prepared at an appropriate depth.

8.1.3 Dynamically Cast-in-Place Concrete Piles

Dynamically cast-in-place (compacto) piles are considered feasible for the proposed structures at Villeneuve Road and Giroux Road and possibly 137 Avenue. At Villeneuve Road the piles could be based in the clay till at a depth of approximately 9 m and at a depth of 8 m at Giroux Road. At the proposed 137 Avenue interchange, compacto piles founded in the sand at a depth of approximately 13 m may be feasible.

The one drawback with this pile type is nominal reinforcing, which limits their lateral capacity. Providing a suitable bearing stratum is available for basing the compacto piles, typical design load capacities for varying shaft diameters are as follows:

Table 8.1:	Typical Dynamically	Cast-in-Place Pile	Capacities
------------	---------------------	--------------------	------------

Shaft Diameter (mm)	Typical Allowable Static Load in Compression (kN)
400	800
500	1100
600	1550

Although preliminary design information has been provided for this foundation alternative, it should be noted that a specialist foundation contractor usually completes the final pile foundation design. The following information should be considered in the foundation design.

Experience has found that dynamically cast, "zero slump" concrete is inherently a much more variable material than conventional plastic concrete. The quality and compressive strength of zero slump concrete is highly sensitive to moisture content. Consequently, proper moisture conditioning of the concrete mix is essential to producing high quality concrete. The concrete mix should be re-tempered as required to produce a compatible mix. Given the potential for high variability, the average compressive strength of zero slump concrete should be significantly higher than the design requirement. Low early age (3 and 7-day) compressive strengths indicate possible problems with achieving the design strength. Consequently, 7-day compressive strengths that are more than 3 MPa less than the design strength should be investigated immediately.

Dynamically cast-in-place pile bases can also be used in combination with plastic concrete shafts. Plastic concrete can be produced without the high variability of compacted shaft concrete, and permits the use of higher fly ash contents for greater mix efficiency.

8.1.4 Driven Steel Piles

The use of driven steel H-piles or pipe piles is considered feasible alternatives for all four sites. Such piles may be designed using both skin friction and end-bearing. At the Villeneuve Road interchange piles would likely encounter refusal at a depth of approximately 15 m. At the Giroux Road interchange the driven steel piles would likely penetrate through the upper hard clay till and terminate in the bedrock. Estimated pile lengths are approximately 30 m below existing grade.

At both the 137 Avenue and McKenney Avenue interchange locations, driven steel piles will be feasible. It is anticipated that pile capacities at 137 Avenue should be slightly higher than McKenney Avenue based on the limited drilling conducted. It is known that several open ended pipe piles were installed and tested using a Pile Driving Analyzer

(PDA) at the Sturgeon River bridge site. Pile diameters of 600 mm and 12.7 m wall thickness driven to a depth of 35 m were designed with an ultimate capacity of 3600 kN. It is speculated that similar capacities would be achievable for piles installed at the McKenney Avenue interchange. Piles installed to a similar length at 137 Avenue should be capable of slightly higher capacity.

8.1.5 Downdrag and Negative Skin Friction

The issue of negative skin friction and down drag are not considered to be a major concern at the Villeneuve and Giroux Road locations. However, this will be an issue at the McKenney and 137 Avenue interchanges. In particular, the soft sediments at the McKenney Avenue will be a greater concern.

If adequate time for settlement of the approach fills is not permitted, the upper portion of the pile shaft installed for the abutments will have to be designed for downdrag associated with long-term settlement of the approach fills. Any portion of the pile shaft that is located within the approach fills for the abutments should incorporate a negative shaft friction. These negative shaft friction issues do not apply to the piles supporting centre piers.

The use of wick drains will likely be required at the McKenney and 137 Avenue interchanges. Wick drains will greatly improve the rate of consolidation at both these locations. It is understood that wick drains were installed at the Sturgeon River Bridge. Details of the performance of the settlement are not known, however this historical data will provide valuable insight regarding the rate of settlement and rate of pore pressure dissipation.

If sufficient time is not permitted for approach fill settlement, it is recommended not to utilize battered piles in the abutment. These piles would be subjected to non-uniform stresses and strains as the soil below the piles settles away from the underside of a battered pile.

8.1.6 Stability of Approach Fills

Typically, head slope angles for the approach fills are between 2 and 2.5H:1V and the sideslopes at 4H:1V. It is assumed that similar geometry will be adopted for the proposed new overpass structures, except at McKenney where a 3H:1V is recommended. It must be noted that the stability of the approach fills is a function of soil type used to construct the embankments. Once the material type for the fills has been confirmed the analyses must be reviewed.

Pore pressures can generate within the underlying native strata and have a significant impact on the stability of the approach fills. Therefore design of the approach fills must consider this aspect in the analysis. In some instances the rate of fill placement is dictated by the pore pressures generated beneath the approach fills.

The concern with stability is primarily associated with the interchanges proposed at McKenney and 137 Avenue. One of the tools used to improve stability is the use of wick drains to dissipate excess pore pressure that is generated during fill placement. As discussed in the previous section, valuable data would have been gathered during the construction of the approach fills for the Sturgeon River Bridge. A detailed review of the data would assist in optimizing the design for wick drain spacing. A wick drain spacing of 1.5m was used for the Sturgeon River Bridge and is considered a reasonable estimate for the proposed McKenney and 137 Avenue interchanges.

8.1.7 Settlement of Approach Fills

Fill settlement comprises a combination of elastic settlement, which occurs immediately during construction, and a consolidation component, which is time dependant and requires the expulsion of pore water from the native subsoil. To calculate the elastic and consolidation settlements at this preliminary stage is beyond the limits of this report. Settlements in the order of 500mm would not be unreasonable. However, the data obtained from the Sturgeon River bridge construction would be able to provide a more accurate estimate of settlement.

If adequate time for settlement is not permitted, there is concern with any piping or surface utilities that may run through or along the approach fill. Due to the long-term settlements, it must be anticipated that there could be distress in these utilities. Therefore, some form of flexible connection should be designed.

In order to accelerate the settlement process, it is recommended that a surcharge be placed on top of the approach fills. In general the greater the surcharge, the greater the impact on increasing the rate of settlement and reducing the long-term settlement that will occur after construction completion. Care must be taken not to place too great a surcharge, as a slope failure may be generated. A fill surcharge of 25 to 50% of the fill height may be feasible, providing instrumentation that is installed within the approach fills indicates favourable performance of the approach fill.

8.1.8 Grading and Fill Material

It is assumed that the majority of the borrow used for construction of the ramps and approach fills will comprise native borrow from within the limits of the RGD project. Standard specifications typically require compaction to a minimum of 95 percent of Standard Proctor maximum dry density at optimum moisture content.

Topsoil, organics and any vegetation should be excavated and removed prior to placement of any fill. Care should be taken not to permit moisture content too high above optimum, as material strength is related to the moisture content of the fill. Typically, as the moisture content increases, the shear strength of the fill decreases. Another concern with moisture contents above optimum is that there is a potential for generating pore pressures during fill placement. High pore pressures with the embankment fills can lead to a lower factor of safety during construction. It should be noted that this issue of pore pressure generation is primarily for clay fill. Sands and silts are much more permeable and have a lower tendency to generate pore pressures. If clay is used as fill for the embankment, care must be taken to assess whether this is an issue.

At locations where wick drains are anticipated, an initial layer of free-draining sand (approximately one metre thick) will be required at the base of the approach fills. This granular layer is required to permit the drainage of water that will be collected by the wick drains as excess pore pressure forces water to be expelled from the native soils.

8.1.9 Monitoring Program

During construction of the proposed embankments, it is critical that the subsoil response to embankment loading be monitored to assess slope stability and confirm completion of consolidation and settlement. As a minimum, it is recommended that a grid of survey hubs be installed on the surface of the approach fills to monitor on-going settlements. Vertical inclinometers could also be installed in the headslope to monitor stability of the

approach fills. At sites where wick drains are installed, it is common to install piezometers to record the dissipation of porewater pressures.

8.2 McKenney Avenue to Villeneuve Road

The 2007 EBA study obtained 19 borehole samples, ranging in depths between 2.3m to 11.4m below grade. This data was sufficient for the at-grade arterial originally planned; however, to meet the Decision Sight Distance requirements for the 110km/h freeway, the profile was lowered near the CN Rail Bridge after the drilling program was completed. Existing borehole data is not deep enough to reach the proposed depths of the storm water pipes. Additional boreholes are recommended to identify geotechnical conditions for the new profile.

8.3 Bokenfohr Landfill

Although the 2007 EBA borehole samples did not identify any debris along the arterial alignment, Alberta Transportation would like additional soil testing to confirm that soil adjacent to the landfill has not been contaminated. A series of boreholes around the edge of the landfill and at the proposed pond location is recommended.

8.4 North of Villeneuve Road

No geotechnical testing has been completed north of Villeneuve Road; however, a Landfill Assessment for the Holden site was conducted in June 2007 that included borehole samples. The drilling program determined that the depth of the waste material is approximately 1.5m thick and has been capped with 1.22m to 1.59m of clay fill material of clay. Beneath the landfill material a layer of clay and some silt deposits were observed at depths ranging from 7.62 to 12.20 meters below grade. At the perimeter of the landfill, clay, silt deposits and sand lenses were observed at various depths ranging from 0 to 10.55 meters below grade.

The profile of Ray Gibbon Drive passes through the landfill with a 4.5m cut, which means that the waste material would be completely removed from the site. Due to the unknown bearing capacity of the waste material, the excavation material can not used to built the ramps for the interchange; however, it may be used on the side slopes or berms (subject to Alberta Environments approvals). If this option is not accepted, the material will have to be shipped to an off-site containment facility. For the purposes of estimating, the project assumes that the entire landfill (33,658m²) would be excavated to a depth of 3.5m and hauled to a landfill off-site, and clean fill would be used to refilled hole, as required.

9.0 Environmental, Historical and Noise Impacts

Much environmental work has been completed for the Ray Gibbon Drive (formerly West Regional Road) corridor in the past including:

- 2002 Groundwater Monitoring Report for the Former Dry Waste Site Riel Drive, St Albert, 2002, EBA Engineering Consultants Ltd.
- Environmental Impact Assessment Summary Report for the West Regional Road, 2003, Spencer Environmental Management Services Ltd.
- West Regional Road Environmental Impact Assessment Final Report Volume I, 2003, Spencer Environmental Management Services Ltd.
- West Regional Road Environmental Impact Assessment Final Report Volume II, 2003, Spencer Environmental Management Services Ltd.
- West Regional Road Environmental Impact Assessment Final Report Volume III, 2003, Spencer Environmental Management Services Ltd.
- Cumulative Effects Assessment and Environmental Protection Plan for the West Regional Road Environmental Impact Assessment Final Report Volume IV, 2003, Spencer Environmental Management Services Ltd.
- Supplement to West Regional Road Environmental Impact Assessment: Response to Department of Fisheries and Oceans Canada Request for Additional Information, 2004, Spencer Environmental Management Services Ltd.
- Construction Management Plan for Landfill Leachate for the West Regional Road, 2004, Spencer Environmental Management Services Ltd.
- Leachate Level Monitoring in St Albert at the West Regional Road During Road Construction, 2006, Thurber Engineering Ltd.
- Assessment of the Fisheries Resources and Habitat of Drainage Ditch Terminating in the Sturgeon River in St Albert, 2006, Pisces Environmental
- Wetland Assessment for the McKenney Avenue Extension: Lacombe Lake Park to West Regional Road, 2006, Spencer Environmental Management Services Ltd.
- Timberlea Neighbourhood Wet Land Compensation, 2006, UMA Engineering Ltd.
- Environmental Overview for the West Regional Road North Extension, 2006, Spencer Environmental Management Services Ltd.
- West Regional Road Stage 2 Letter of Advice Information Package, 2007, Spencer Environmental Management Services Ltd.
- Application under the Water Act for Approvals and/or Licences, 2007, Spencer Environmental Management Services Ltd.
- West Regional Road Stage 2 Wetland Assessment and Compensation Plan, 2007, Spencer Environmental Management Services Ltd.
- West Regional Road Stage 2 Water Act Application and Alberta Environmental Protection and Enhancement Act Notification, 2007, Spencer Environmental Management Services Ltd.

The following section discusses areas that require additional work to convert Ray Gibbon Drive to a freeway.

9.1 Environmental Assessment

In 2003, an Environmental Impact Assessment was conducted by Spencer Environmental Management Ltd. as part of the original application for Ray Gibbon Drive from existing 137 Avenue to the CN Rail crossing. This report states that the roadway will have a posted speed of 70km/hour, with a 58m wide right-of-way and at-grade intersections.

In 2007, Spencer was asked to identify future environmental reviews and permitting requirements to expand Ray Gibbon Drive to a freeway standard. The study identified the following issues:

- New approvals or amendments to existing approvals will be needed including:
 - Navigable Waters Protection Act,
 - Fisheries Act,
 - Public Lands Act,
 - Water Act,
 - Wetland Policy (if wetlands are removed),
 - EPEA registration of stormwater drainage.
- There are potential triggers for an EIA under CEAA including Navigable Waters Permitting, CTA approval of rail crossing, and DFO authorizations – it is not known if another EIA will be required but it is possible given these triggers and changes to the project
- If CÉAA is triggered, expanded environmental studies (beyond what was already done for WRR) will be required including
 - Rare bryophyte survey
 - Fisheries assessments at Carrot Creek and (potentially) Sturgeon River
 - · Review of previous noise studies
 - Wildlife and vegetation survey at Carrot Creek
 - Wetland assessments if within disturbance area.
- Public consultation will likely be required whether CEAA is triggered or not, it is often part of the Alberta Transportation planning process

The full report has been included in Appendix F.

9.2 Wetland Transfer

A small wetland at 9+800 was removed during Stage 2 of construction. This area was compensated for near Big Lake. Documentation of this transfer has been included in Appendix F.

9.3 Holden Landfill

The freeway alignment of Ray Gibbon Drive passes directly though the Holden Landfill located north of Villeneuve Road on the SW18 54-25-W4M. In June of 2007, EBA Engineering completed a landfill assessment of this property to determine if Alberta Environments standard 300m development setback could be reduced or eliminated. The limits of the landfill are shown on drawing No. PP03 (see Appendix A).

According to previous records and information provided by the City of St. Albert, the Holden Landfill was approved to accept dry waste material. The drilling program confirmed that the landfill contains dry waste including various types of wood (plywood, pallets), some metal debris (tin, wires), and some textiles (rugs, twine). No household or municipal waste was observed during the investigation. The depth of the waste material is approximately 1.5m thick and has been capped with 1.22m to 1.59m of clay fill material of clay. Due to the non-hazardous nature of the material located within the landfill, the study concluded that a 30m development offset was reasonable.

The profile of Ray Gibbon Drive passes through the landfill with a 4.5m cut, which means that the waste material would be completely removed from the site. Due to the unknown bearing capacity of the waste material, the excavation material can not used to built the ramps for the interchange; however, it may be used on the side slopes or berms (subject to Alberta Environments approvals). If this option is not accepted, the material will have to be shipped to an off-site containment facility. For the purposes of estimating, the project assumes that the entire landfill (33,658m²) would be excavated to a depth of 3.5m and hauled off-site, and clean fill would be used to refilled hole, as required.

9.4 Bokenfohr Landfill

The freeway alignment of Ray Gibbon Drive passes along the edge of the Bokenfohr Landfill located south of Villeneuve Road on the NW7 54-25-W4M. Municipal records indicate that the landfill was operated by Provincial Sanitation Ltd. in a reclaimed sand pit between 1994 and at least 1997. There are no records of landfill decommissioning or reclamation in the municipal records. In March, 2006, the site was still in records with Sturgeon County under the Land Use Bylaw as a landfill site. A landfill assessment has not been completed to date as the current landowner refuses access to the site.

The landfill was approved to accept only non-putrescible and non-hazardous waste including dry construction and demolition waste. However, in the municipal records, there is a record of charges laid July 15, 1997 on six counts of contravention of the Waste Management Regulation of the Public Health Act including acceptance of putrescible waste and permitting waste blowing from site. In addition, there is record that the landfill accepted environmentally hazardous waste, potassium super oxide which rapidly oxidizes in contact with water. As there is no record of appropriate remediation and reclamation of the landfill site, and indication that the landfill accepted environmentally hazardous wastes, it is recommended that a landfill assessment be completed when possible.

Approximate extent of the landfill was determined by aerial photographs and available sketches on record. Refer to drawing No. PP03 in Appendix A.

The information and records search on the Bokenfohr property and landfill has included information requests to the Environmental Law Centre and Alberta Environment's Freedom of Information and Protection of Privacy (FOIP) Office. The Environmental Law Centre maintains a database of Environmental Enforcement actions and Wellsite Reclamation records. The search was based on the legal land location and the property owner's name (Carl Bokenfohr, deceased).

Available records regarding enforcement actions are limited to those pursuant to the current Alberta Environmental Protection and Enhancement Act, and the predecessors the Hazardous Chemicals Act, Agricultural Chemicals Act, Clean Water Act, Clean Air Act, and/or pursuant to the current Water Act. Based on the legal land location and property owner's name; there were no enforcement actions issued under the above. The database does not include Clean Up Orders issued under the Litter Act or Environmental Protection Orders respecting unsightly property issued under EPEA.

The Wellsite Reclamation database is limited to the following reclamation actions:
Reclamation Certificates (applied for, issued, and cancelled), Reclamation Orders, and
Conservation and Reclamation Notices. Information is limited to wellsites, oil production
sites, pipelines, compressor sites and some sand and gravel operations on private
lands. The search was based on the legal land location of the Bokenforh landfill in an

attempt to search for potential reclamation information on the landfill. A reclamation certificate was issued to Central-Del Rio Oils Limited in 1968; no other reclamation actions were found for the land location.

Alberta Environment was contacted in late January 2008 to initiate a records search on the Bokenforh landfill. The request was directed to the Alberta Environment FOIP Office. A general FOIP request was submitted, which triggers a search for internal government information or correspondence. A Routine Disclosure request was also submitted, which triggers a search for technical information and reports. The following is a summary of pertinent documents provided under the Routine Disclosure Request:

December 8, 1995: "Hazmat reported incident to Alberta Environmental Protection", Kanata Environmental Services contracted Hazmat to haul 14 tonnes potassium super oxide waste within canisters (CHEMÓX canisters) from CFB in Esquimalt, BC and haul back to Alberta. Kanata accepted the waste at the Bokenfohr Landfill.

December 21, 1995: Letter from Alberta Environmental Protection to Provincial Sanitation directing proper handling of canisters and including information describing the canisters as a dangerous good.

February 9, 1996: Enforcement Order under Environmental Protection and Enhancement Act to Kanata Environmental Services for removal and proper disposal of the untreated and buried CHEMOX canisters. Investigators noted some of the substance had leaked from the canisters. Provincial Sanitation is mentioned on the Order as the operator of the landfill.

February 12, 1996: Letter from Alberta Environmental Protection to Provincial Sanitation stating AEP hired CEDA Environmental Services to handle and remove canisters and neutralize any damaged canisters on site. Provincial Sanitation to supply equipment (track hoe, cat, back hoe) and operators for work necessary to remove canisters and backfill.

February 12, 1996: Fax from Provincial Sanitation to AEP confirming equipment and operators would be supplied.

February 29, 1996: Inspection record by Alberta Environment Land Conservation and Reclamation. Determined that reclamation work was progressing, including placing subsoils and topsoil over fill as directed. (Inspection seems to be independent of and does not mention the canister issue).

July 8, 1996: Order under Public Health Act to Provincial Sanitation and the Bokenfohrs. Stated Provincial Sanitation had breached their permit by accepting putrescibile and other non-dry wastes and placing waste outside approved area. Ordered to close landfill immediately and comply with order and conditions of permit (this is related to the Charges laid under the Provincial Health Act against Provincial Sanitation and the Bokenfohrs July 1997. Seems they did not comply with the Order issued July 1996. There is no copy of the Charges in the documentation from AENV).

September 19, 1996: Letter from Alberta Environmental Protection to Provincial Sanitation stating removal of canisters is expected to be completed by October 15, 1996.

November 12, 1996: Letter from Alberta Environmental Protection to Carl Bokenfohr confirming canisters were removed from the landfill on October 30, 1996.

The following is a summary of pertinent documents provided under the FOIP Request:

Updated

PCD Inspector's Notes

Summary of CHEMOX canister delivery, handling and removal. PDC (this acronym is never defined) investigators are told that some of the canisters had holes in them and an unnamed source observed some liquids boiling. The canisters could result in a potential adverse effect on the environment if untreated.

January 4, 1996: Memo from Alberta Environmental Protection (AEP) Industrial Wastes Branch to AEP Investigation Branch advising that empty containers are not considered hazardous waste. Containers that are not empty would need to be tested to determine if they are hazardous following an appended procedure.

February 9, 1996: Enforcement Order under Environmental Protection and Enhancement Act to Provincial Sanitation Ltd. for acceptance of hazardous waste. Ordered to remove and properly dispose of the untreated and buried CHEMOX canisters.

Feb 15, 1996: Alberta Environmental Protection, Investigation Diary
Notes that CEDA removed 6366 canisters however approximately 80 could not be found
and remained in landfill. CEDA reacted 31 canisters on site; water was contained and
removed from site. Efforts to find and remove remaining canisters were stopped.
Note: From this document, it seems that there may be approximately 80 CHEMOX
canisters remaining in the landfill. Alberta Environmental Protection deemed this file
closed.

Undated

Background Information Document, unnamed source.

Information on CHEMOX canister manufacturer, normal use, hazards and removal rationale.

June 18, 1996: Alberta Environment, Environmental Management System, Incident Details

Public Complaint Incident Comment: Provincial Sanitation has a dry landfill in the County of Sturgeon where caller was instructed to dump acid, oil, paint thinners. Restaurant refuse is also dumped at the dry landfill.

Note: From this public incident report there may be a risk of encountering hazardous wastes including hydrochemicals and acid.

Undated

Summary of landfill status and CHEMOX canisters incident.

Landfill is permitted through the Aspen Health Unit. Aspen Health Unit issued an order on July 8, 1996 which closed the facility and required them to remove all non-approved waste from the landfill.

Based on the above information and the hazardous nature of the landfill material, it is expected that Alberta Environments standard offset of 300m will be required as a minimum. This offset will have significant impacts on development opportunities on the remnant land to the east of Ray Gibbon Drive. Recommendations for offset and required mitigation or remediation will be detailed in a future landfill assessment.

9.5 Additional Testholes Required

Although the 2007 EBA borehole samples did not identify any debris along the arterial alignment, Alberta Transportation would like additional soil testing to confirm that soil adjacent to the landfill has not been contaminated. A series of boreholes around the edge of the landfill and at the proposed pond location is recommended.

9.6 Historical Impacts

In 2002, a Historical Resources Impact Assessment was completed by Altamira Consulting Ltd. along the original alignment of Ray Gibbon Drive, between existing 137 Avenue and Villeneuve Road. One new archaeological site was found during the survey, but the information potential offered by the site was considered to be minimal. The study recommended that no further assessment was warranted for the study area.

In 2003, a Historical Resources Impact Assessment was completed by Altamira Consulting Ltd. for borrow pit sites for Ray Gibbon Drive. The borrow pits were located in 29-53-25-W4M and 31-53-25-W4M. The study concluded that these lands did not contain any archaeological, paleontological or historical period sites that are of historical importance and recommended that no further assessment was warranted for the study area.

In 2007, the Environmental Overview for the Ray Gibbon Drive north extension did not identify any known historical resources and concluded that a Historical Resources Impact Assessment would not be required.

Additional studies are not required.

9.7 Noise

Road noise is defined as the sounds generated by vehicles operating on a roadway. This includes, but is not limited to engine/exhaust sounds and road contact sounds. For construction or improvements of highways through urban areas, Alberta Transportation has adopted a noise level of 65 dBa Leq24. Using a 10 year planning horizon, the province is committed to providing noise mitigation measures above the 65 dBa Leq24 threshold.

9.7.1 Arterial Road Noise

In 2003, HFP Acoustical Consultants Corp. completed a "Baseline Environmental Noise Survey" for the proposed Ray Gibbon Drive arterial, between existing 137 Avenue and McKenney Avenue. The primary concern related to traffic noise impacts were the effects on wildlife using nearby natural areas, particularly waterfowl, as well as community enjoyment of Red Willow Park and nearby natural areas. Of specific concern were the effects of ambient noise on the audibility of bird sounds among birds, and between birds and bird watchers. There was also concern regarding the impact of road traffic noise on an existing outdoor recreational facility located to the east of the road.

The results of the study indicate that there would be noticeable increases in ambient sound levels at most locations on the east and north shores of Big Lake, at the sports facility and in the white spruce stand. However, traffic noise contributions from the road would generally be within the recommended guideline sound level limit for road traffic noise. Traffic noise would increase with increasing proximity to the road and with

increasing traffic volume. The worst-case scenario for traffic noise contributions occurs for the greatest road traffic volumes. For this scenario, traffic sound levels were still expected to be within the recommended sound level limit in all areas beyond 250 metres from the road and in many areas as close as 100 metres to the road.

The potential effects of future residential development adjacent to the proposed road will result in further increases in ambient noise in the Big Lake area, although the affected areas will be mainly within a distance of approximately 1 kilometre of the residential areas.

9.7.2 Freeway Road Noise

The conversion of Ray Gibbon Drive to a freeway required the noise models to be revisited. In addition to higher operating speeds and increased traffic volumes, the highway alignment was brought within 100m of existing residential development between Giroux Road and Villeneuve Road. ACI Acoustical was asked to review the proposed plan and profile for the freeway. Refer to Appendix G for the full report.

The results of the noise modeling for Future Conditions on Ray Gibbon Drive indicated noise levels in excess of the Alberta Transportation guideline criteria of 65 dBa Leq24 at many locations directly adjacent to the roadway, indicating that noise mitigation would be required. In particular, some locations were as high as 69 dBa Leq24. As such, noise mitigation barriers were added to the model with the intent of meeting two design criteria:

- A total noise level less than 65 dBa Leg24.
- A minimum reduction (relative to the baseline case) of 5 dBa with the installation of a noise wall.

Using these two criteria, noise barriers were modeled at the highway right-of-way limits since this could be at the rear property line of development. The modeling indicated that a height of 3.5m relative to grade would be required at most locations. In particular:

- Starting from the southwest residential lot in Timberlea (south of McKenney) and wrapping around along the south edge for at least 2 lots and then continuing until approximately 120m south of McKenney Avenue.
- Starting from approximately 100m north of McKenney Avenue in Timberlea and continuing until the CN Rail right-of-way then wrapping around adjacent to the CN Rail right-of-way for at least two lots from Ray Gibbon Drive.
- Starting from north of the CN Rail right-of-way (and also wrapping around adjacent to the CN Rail right-of-way for at least two lots from Ray Gibbon Drive) and continuing on until just south of Giroux Road and extending east to approximately 75m east of Ray Gibbon Drive.
- Starting at approximately 250m north of Giroux Road and continuing along until approximately 260m south of Villeneuve Road.

North of this, a barrier height of 1.8m can be used starting from 260m south of Villeneuve Road and continuing north then turning east until approximately 400m east of Ray Gibbon Drive.

For all barriers taller than 1.83m, it is possible to exchange berm height for fence height and vice-versa; as long as the centerline of the fence does not change (i.e. it remains at the current proposed property line). The key is that the total height has to be that listed above. For cost estimating purposes, a \$5.3M noise wall was included in Section 10.

100

Alberta Transportation will provide noise attenuation according to its current noise guidelines. Areas that are subdivided with no development are viewed as undeveloped and therefore noise attenuation would be the responsibility of the developers and/or the City.

1

10.0 Costs to Convert the Arterial to a Freeway

On October 30, 2007, in a letter from Minister Ouellette to Mayor Crouse, the province committed to reimburse the City for the difference in construction costs between an urban arterial standard within a 22.5m right-of-way and a freeway standard right-of-way. To that end, the tables on the next page are cost comparisons for the two roads.

Reimbursement costs to the City from the Province are equal to \$45,418,000. Detailed cost estimates for each scenario, including all assumptions, have been included in Appendix H.

Table 10.1: Costs Incurred (to date) by St Albert in Construction of Ray Gibbon Drive

Costs	Stage 1	Stage 2	Stage 3	Total	City	Province	Notes
22.5m ROW & construction of 2 lanes	\$18,999,000	\$7,299,000	\$0	\$26,298,000	\$26,298,000	\$0	1,2,3
Additional 22.5m ROW & pre-construction preparation (grading, ect.)	\$5,417,000	\$1,561,000	\$0	\$6,978,000	\$0	\$6,978,000	1,2,3
Additional 33m ROW (grading, ect.)	\$2,672,000	\$4,101,000	\$0	\$6,773,000	\$0	\$6,773,000	4
Interchange ROW (McKenney Avenue)	\$0	\$581,000	\$0	\$581,000	\$0	\$581,000	5
Total	\$27,088,000	\$13,542,000	\$0	\$40,630,000	\$26,298,000	\$14,332,000	

Table 10.2: Estimated Future Costs to Secure All Land Requirements and Construct Stage 3

Section	Stage 1	Stage 2	Stage 3	Total	City	Province	Notes
22.5m ROW & construction of 2 lanes	\$0	\$0	\$31,756,000	\$31,756,000	\$16,265,000	\$15,491,000	
Additional 22.5m ROW	\$0	\$0	\$1,180,000	\$1,180,000	\$0	\$1,180,000	
Additional 33m ROW	\$0	\$0	\$1,736,000	\$1,736,000	\$0	\$1,736,000	
Interchange ROW (137th Avenue, McKenney Avenue, Giroux Road & Villeneuve Road) and Remnant Parcels	\$2,350,000	\$1,685,000	\$8,644,000	\$12,679,000	\$0	\$12,679,000	
Total	\$2,350,000	\$1,685,000	\$43,316,000	\$47,351,000	\$16,265,000	\$31,086,000	

Table 10.3: Estimated Future Costs to Construct Remaining Lanes to 14+600

Section	Stage 1	Stage 2	Expanded Stage 3	Total	City	Province	Notes
Construct additional 2 lanes with bridge structures (4 lanes total)	\$106,180,000	\$55,482,000	\$116,750,000	\$278,412,000	\$0	\$278,412,000	6
Construct additional 2 lanes (6 lanes total)	\$26,574,000	\$7,908,000	\$19,330,000	\$53,812,000	\$0	\$53,812,000	
Construct additional 2 lanes (8 lanes total)	\$20,442,000	\$8,936,000	\$19,919,000	\$49,297,000	\$0	\$49,297,000	
Total	\$153,196,000	\$72,326,000	\$155,999,000	\$381,521,000	\$0	\$381,521,000	

Notes

- 1) Includes additional bridge piers for future widening, purchased land, grading, and engineering
- 2) Stage 2 lands from the Province not included in calculations (55 acres, March 2007)
- 3) City owned lands not included in calculations (+/- 70 acres)
- 4) Additional \$2,818,000 due to extra cuts to accommodate future alignment and storm pond expansion for six lanes
- 5) Additional interchange lands at McKenney
- 6) Includes full interchange construction costs

V.

...

11.0 Conclusions and Recommendations

11.1 Conclusions

During initial talks between the City and the Province, a number of action items were identified for this study. These are listed below:

- 1. Identify future right-of-way requirements for the interchanges
- Modification to the curves at stations 6+341, 11+286 and 12+300
- Modify taper lengths and ramp radii to meet the Province's standards at interchanges
- Identify size, ultimate locations, and right-of-way requirements for storm water management ponds
- Insure adequate Stopping Sight Distance along the corridor
- 6. Identify cut and fill limits for the 8-lane cross-section
- Develop typical cross-sections with Alberta Transportation's standard shoulder requirements, curb widths, median widths, and vertical clearances for catch basin leads
- 8. Confirm the existing bridge at the Sturgeon River is sufficient for 110km/h

Even though some of Ray Gibbon Drive was designed and constructed prior to Alberta Transportation and the City resuming discussions, detailed analysis shows that the roadway can be converted to a freeway.

Areas that require design exemptions are discussed below:

- Intersection Offset from Ramp Terminal on 137th Avenue
 The South Riel Area Structure Plan (ASP) was approved on September 18, 2007
 with an intersection located 270m from the proposed interchange ramp terminal.
 Changing an approved ASP has serious legal implications and this area is
 presently under construction. Detailed Synchro analysis has demonstrated that
 the proximity of the intersection will not negatively impact the operation of the
 interchange or the freeway.
- Cross-section at 137th Avenue Due to the status of construction of the South Riel ASP, a retaining wall will be designed along the northeast ramp.
- Vertical Alignment at Station 7+491
 The existing crest curve has a k=97, which does not meet the Stopping Sight Distance requirements for 110km/h. The Stopping Sight Distance for 110km/h is k=100. Improving this curve to meet standard will be a negligible improvement.
- Intersection Offset from Ramp Terminal on McKenney Avenue
 The Timberlea Area Structure Plan was approved on November 21, 2005 with an
 intersection located 330m from the proposed interchange ramp terminal.
 Changing an approved Area Structure Plan has serious legal implications.
 Detailed Synchro analysis has demonstrated that the proximity of the
 intersection will not negatively impact the operation of the interchange or the
 freeway.
- Intersection Offset from Ramp Terminal on Giroux Road
 The Northwest Urban Village Area Structure Plan and the North Ridge Area
 Structure Plan were approved on July 4, 2006 and January 19, 2004,
 respectively. The ASP's share an intersection located 270m from the proposed

ramp terminal. Changing an approved Area Structure Plan has serious legal implications. Detailed Synchro analysis has demonstrated that the proximity of the intersection will not negatively impact the operation of the interchange or the freeway.

These modifications replace the deficiencies table originally submitted in July, 2007.

11.2 Recommendations and Suggested Timelines

This report identifies the tasks required for the Province to convert Ray Gibbon Drive to a freeway. The key action items for the Province to complete are shown in Table 11.1.

Table 11.1: Future Action Items

Recommendation	Timeline		
Complete additional geotechnical testing for the proposed roadway, particularly near the Bokenfohr landfill and the proposed storm water pond at Villeneuve	As soon as possible - prior to land acquisition		
Secure additional right-of-way required	As soon as possible		
Work with CN to develop a grade-separated crossing agreement	As soon as possible		
Maintain speed limit at McKenney intersection to 90 km/h when inside lane is added	Until interchange constructed		
Develop detour plans including temporary CN rail	Complete within three years or two years prior to twinning		
Initiate Environmental Impact Assessment	As soon as possible		
Work with Alta Link to develop relocation plans for the power transmission line crossings	One/two years before twinning		
Install sleeves at long-term crossings to reduce future traffic disruptions	During twinning		

٠,

Appendix A Plan and Profile Drawings

Project Ray Gibbon Drive

> Interchange Ramp Profiles Functional Planning Study 137 Ave Interchange

Figure No.

12436 PP 04

Ray Gibbon Drive

Interchange Ramp Profiles
Functional Planning Study
McKenney Ave. Interchnage
12436 PP 05

Figure No.

Project

Selection se.

Giroux Rd

Ray Gibbon Drive Project

Interchange Ramp Profiles
Functional Planning Study
Giroux Rd. Interchange

Figure No.

12436 PP 06

ISL Engineering and Land Services

Project Ray Gibbon Drive

Interchange Ramp Profiles
Functional Planning Study
Villenuve Rd. Interchange

Figure No.

12436 PP 07

Appendix B Structural Drawings

Appendix C Traffic Analysis

Intersections near Ramp Terminals

Introduction

Ray Gibbon Drive is currently a two-lane arterial within the City of St Albert.

Alberta Infrastructure and Transportation has plans to take over Ray Gibbon Drive and ultimately designate this roadway as a freeway. The reclassification of Ray Gibbon Drive as a freeway has resulted some design constraints.

Alberta Infrastructure and Transportation has a standard offset of 400m from a ramp terminal to an intersection to ensure that the interchange is not negatively affected by queues at the local intersection. There are currently three proposed intersections that are within 400m of the proposed interchange ramps along Ray Gibbon Drive at Giroux Road, McKenney Avenue, and 137th Avenue (refer to attached drawings in Appendix A). Long-term traffic analysis for the peak hours in Synchro 7 have indicated that the intersections will not affect the interchange ramp terminals (refer to Synchro printouts in Appendix B). Based on this analysis, design exceptions are requested at these locations.

Giroux Road

The North Ridge ASP is located north of Giroux Road and was approved by City Council on January 19, 2004. The south half of this ASP has been developed, except for a small parcel adjacent to Giroux Road. This area is intended for low to medium density residential and a park/storm water facility. Access to this area is limited to two accesses along Giroux Road, the proposed intersection and one further east. There is no connection to the internal road network within the ASP.

The Northwest Urban Village ASP is located south of Giroux Road and was approved by City Council on July 4, 2006. This ASP is undeveloped, except for the Fire Hall that is located in the east corner along Giroux Road. Public access to this area is limited to the proposed intersection. Emergency access from the Fire Hall is located further east on Giroux Road.

The ASP's share an intersection on Giroux Road approximately 270m east of the of the ramp terminal for the Giroux Road interchange. Traffic analysis indicates that the intersection will operate at LOS A in the AM and PM peaks, with a maximum eastbound gueue of 50m, assuming no left turn bay. This analysis assumes a 4-lane cross-section on Giroux Road and a 2-lane cross-section on the local road with left-turn bays.

McKenney Avenue

The Timberlea ASP is located east of the West Regional Road between the CN Rail and the Sturgeon River and was approved by City Council on November 21, 2005. This ASP is currently undeveloped.

The ASP has an intersection located approximately 360m east of the ramp terminal for the McKenney interchange. Traffic analysis indicates that the

intersection will operate at LOS B in the AM and PM peaks, with a maximum eastbound queue of 100m, assuming no left turn bay. This analysis assumes a 4-lane cross-section on McKenney and a 2-lane cross-section on the local road with left-turn bays.

137th Avenue

The South Riel ASP is located east of the West Regional Road was approved by City Council on September 18, 2007. This ASP is bordered to the west by the West Regional Road, to the south by the current 137th Avenue alignment (which will be closed once the Anthony Henday is constructed), to the east by the CN Rail line (approximately 675m from the east ramp terminal on the West Regional Road), and to the north by Levasseur Road. This ASP has mixed zoning with little industrial/commercial and residential proposed within its boundaries. Construction is scheduled for the spring of 2008.

The ASP has two intersections along 137th Avenue, located approximately 250m and 450m east of the ramp terminal for the 137 Avenue interchange. Traffic analysis indicates that the intersection closest to the interchange will operate at LOS B in the AM peak and LOS C in the PM peak, with a maximum eastbound queue of 60m, assuming a double left turn bay. This analysis assumes a 4-lane cross-section on 137th Avenue and a 4-lane cross-section (near the intersection) on the local road with left- and right-turn bays.

For discussion purposes, these intersections were combined together half way between the West Regional Road and the at-grade crossing of the CN line. The single intersection would operate at LOS C in the AM peak (2 movements at LOS D) and LOS D in the PM peak (with 1 movement at LOS D, 3 movements at LOS E, and 3 movements at LOS F). The maximum eastbound queue is expected to be 130m. This intersection fails operationally and is not a viable alternative.

Conclusion

The intersections identified in the ASP's along the West Regional Road will not affect the operation of the interchanges and should be allowed to proceed.

Appendix A - Intersection Configurations

Appendix B - Synchro Reports

	٨	-	7	1	+	*	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	M. W. 7.3575.40	ተተ	7	*	^		-			ሻሻ	100000000000000000000000000000000000000	7
Volume (vph)	0		285			0	0	0	0	12.4	0	190
Ideal Flow (vphpl)	1900	1900	1900			1900	1900	1900	1900		1900	1900
Storage Length (m)	0.0		150,0	70.0		0.0	0.0	0563	0.0			100,0
Storage Lanes	0		1	- 1		0	0		0			1
Taper Length (m)	7.5		7.5	7.5		7.5	7.5		7.5			7.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00		1.00	1.00
Frt			0.850				2.7	16.55		77.5		0.850
Flt Protected				0.950						0.950		0.000
Satd. Flow (prot)	0	3579	. 1601	1789	. 3579	0	0	0	0	3471	0	1601
FIt Permitted				0.117						0.950		1001
Satd. Flow (perm)	0	3579	1601	220	3579	0	0	0	0	3471	0	1601
Right Turn on Red		1 302440	Yes		1	Yes			Yes			Yes
Satd. Flow (RTOR)			310	ti, las		1000						207
Link Speed (k/h)		50	100000		50			50			50	201
Link Distance (m)		481.1			115.3			257.4			209.7	
Travel Time (s)		34.6			8.3			18.5			15.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	982	310	207	568	0	0	0	0.02	878	0.02	207
Shared Lane Traffic (%)	100	. 377	11.52%	-				1.0		0,0	U	201
Lane Group Flow (vph)	0	982	310	207	568	0	0	0	. 0	878	0	207
Enter Blocked Intersection	No	No	No	- No	No	No	No	No	No	No	No	- No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			7.4			7.4	, again	Lon	7.4	rugite
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)	II.	4.8			4.8	1.00		4.8	- 2		4.8	
Two way Left Turn Lane					11.0			4.0			4.0	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.00	25	24	0.00	14	24	0.00	14	24	0.00	14
Number of Detectors	2	- 2	2	. 2	2			1.0	14	2.		2
Detector Template		10.50			-					4.		. 2
Leading Detector (m)	de la	15.2	15.2	15.2	15.2	100				15.2	-	15.2
Trailing Detector (m)		0.0	0.0	0.0	0.0				1: 23	0.0		0.0
Detector 1 Position(m)	Sex .	0.0	0.0	0.0	0.0	4.5	222		11 75	0.0	1	0.0
Detector 1 Size(m)		1.8	1.8	1.8	1.8	200.0				1.8		1.8
Detector 1 Type	31			CI+Ex		(S	See all			CI+Ex		
Detector 1 Channel		OI.L.	OILLA	OI.LA	CITLA	(410)	W. 100		3	CITEX	10	CI+Ex
Detector 1 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Queue (s)		0.0	0.0	0.0	0.0	- 2		17.5	*30	0.0	1	0.0
Detector 1 Delay (s)		0.0	0.0	0.0	0.0	100				0.0		0.0
Detector 2 Position(m)		13.4	13.4	13.4	13.4			15		13.4		0.0
Detector 2 Size(m)		1.8	1.8	1.8	1.8					1.8		13.4
Detector 2 Type		CI+Ex	CI+Ex	CI+Ex	CI+Ex					CI+Ex		1.8
Detector 2 Channel		OI-PV	OILLA	OITEX	OITEX					CITEX		CI+Ex
Detector 2 Extend (s)		0.0	0.0	0.0	0.0			N	10-	0.0	35	
Furn Type		0.0	Free		0.0					0.0		0.0
Protected Phases		4	1100	pm+pt	8			1	-	custom		Free
Permitted Phases		.4	Free	8.	0		-5					Free
Detector Phase		4	1160	3	0					6		Free
COLOUT HOOG		.9	447	3	8					6		

		•	-	*	1	-	*	1	1	~	1	ţ	1
Lane Group		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT/	NBR	SBL	SBT	SBR
Switch Phase		CALE	1					= 1		772	3 - 3	0 000	
Minimum Initial (s)			4.0		4.0	4.0					4.0		
Minimum Split (s)			20.0		8.0	20.0					20.0		
Total Split (s)		0.0	38.0	0.0	14.0	52.0	0.0	0.0	0.0	0.0	36.0	0.0	0.0
Total Split (%)		0.0%	43.2%	0.0%	15.9%	59.1%	0.0%	0.0%	0.0%	0.0%	40.9%	0.0%	0.0%
Maximum Green (s)			34.0		10.0	48.0					32.0		
Yellow Time (s)	-34		3.5	714	3.5	3.5					3.5		
All-Red Time (s)			0.5		0.5	0.5					0.5		
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag			Lag		Lead			2000	-				
Lead-Lag Optimize?			Yes		Yes								
Vehicle Extension (s)			3.0		3.0	3.0			160		3.0		
Recall Mode			None		None	None					C-Max		
Walk Time (s)			5.0		37	.5.0				18 mle	5.0		
Flash Dont Walk (s)			11.0			11.0				70.	11.0		
Pedestrian Calls (#/hr)			. 0		1	0		T.			. 0		
Act Effct Green (s)			30.2	88.0	43.9	43.9					36.1		88.0
Actuated g/C Ratio			0.34	1.00	0.50	0.50				126	0.41		1.00
v/c Ratio			0.80	0.19	0.73	0.32					0.62		0.13
Control Delay	-5		31.5	0.3	31.7	13.2				3	23.7	8	0.2
Queue Delay			0.0	0.0	0.0	0.0					0.0		0.0
Total Delay			31.5	0.3	31.7	13.2				17.600	23.7		0.2
LOS			C	A	C	В					C		A
Approach Delay			24.0			18.1					102		
Approach LOS			C			В							

Area Type: Other

Cycle Length: 88
Actuated Cycle Length: 88

Offset: 0 (0%), Referenced to phase 2: and 6:SBL, Start of Green

Natural Cycle: 50

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.80 Intersection Signal Delay: 20.9 Intersection Capacity Utilization 84.5%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: 137 Ave & N-EW Off Ramp

	•	→	7	1	+	1	1	1	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ			11	7	ነ	2	7			
Volume (vph)	143	1568	0	0	570	428			48	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	70.0		0.0	0.0		100.0	0.0		100.0	0.0	10.5	0.0
Storage Lanes	1		0	0		1	2		1	0		0
Taper Length (m)	7.5		7.5	7.5		7.5			7.5	7.5		7.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00		1.00	1.00	1.00	1.00	1.00
Frt ·	9750	10000	100000	100	0.0000	0.850		1270	0.850	26,75%	7	7,000
Fit Protected	0.950					93573	0.950					
Satd. Flow (prot)	1789	3579	0	- 0	3579	1601		0	1601	0	0	. 0
Flt Permitted	0.400	3000		- 1			0.950					
Satd. Flow (perm)	753	3579	0	0	3579	1601		0	1601	0	0	0
Right Turn on Red			Yes		00.0	Yes			Yes			Yes
Satd, Flow (RTOR)	10.70		100			465			52			103
Link Speed (k/h)		50			50			50	. 02		50	
Link Distance (m)	1-0.0	115.3			212.1		21	260.3			243.0	
Travel Time (s)		8.3		-	15.3			18.7		*:	17.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	155	1704	0.52	0.52	620	465		0.02	52	0.52	0.92	0.92
Shared Lane Traffic (%)	100	1104	v	U	020	400	100	U	32	U	U	U
Lane Group Flow (vph)	155	1704	0	0	620	465	155	0	F0	•		0
Enter Blocked Intersection	No	No	No	No	No	No		No	52	0	0	0
Lane Alignment	Left	Left		Left				The second second	No	No	No	No
Median Width(m)	Ceit	7.4	Right	Leit	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(m)	100		7.10		7.4			7.4			7.4	
Crosswalk Width(m)		0.0			4.8			0.0			0.0	
		4.0			4.0			4.8	9611	4 16	4.8	
Two way Left Turn Lane	0.00	0.00	0.00	0.00	0.00	. 0.00	0.00	0.00	0.00	0.00	0.00	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h) Number of Detectors	24	2	14	24		25 2	24		25	24		14
	2	2			2	2		-4 35	. 2			
Detector Template	450	450			450	45.0	400	S-32-07	45.0			
Leading Detector (m)	15.2	15.2	200		15.2	15.2	15.2	13.5	15.2	100		
Trailing Detector (m)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Position(m)	0.0	0.0		4 I VII 3	0.0	0.0	0.0	MARTIE	0.0	250	- S	250
Detector 1 Size(m)	1.8	1.8			1.8	1.8	1.8		1.8			
Detector 1 Type	CITEX	CI+Ex		4.	CI+EX	CITEX	CI+Ex		· CI+Ex	81 (3 /		
Detector 1 Channel			77									
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0		0.0	Bress		
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Delay (s)	- 0.0	0.0			0.0	0.0	0.0		0.0			
Detector 2 Position(m)	13.4	13.4			13.4	13.4	13.4		13.4			
Detector 2 Size(m)	1.8	1.8			1.8	1.8	1.8		1.8	1		
Detector 2 Type	CI+Ex	CI+Ex			CI+Ex	CI+Ex	CI+Ex		CI+Ex			
Detector 2 Channel	100			0.57	22.							
Detector 2 Extend (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Turn Type	Perm					Perm	custom	51	Free			
Protected Phases		4			8							
Permitted Phases	4					8	2	7.4	Free			
Detector Phase	4	4			8	8	2					

	•	-	*	1	-	4	1	†	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase	1-54										-	227730
Minimum Initial (s)	4.0	4.0			4.0	4.0	4.0					
Minimum Split (s)	20.0	20.0			20.0	20.0	20.0			1/2		
Total Split (s)	60.0	60.0	0.0	0.0	60.0	60.0	20.0	0.0	0.0	0.0	0.0	0.0
Total Split (%)	75.0%	75.0%	0.0%	0.0%	75.0%	75.0%	25.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Maximum Green (s)	56.0	56.0	NO CONTRACTOR		56.0	56.0	16.0			1965-96120		540000
Yellow Time (s)	3.5	3.5			3.5	3.5	3.5	1.88				
All-Red Time (s)	0.5	0.5			0.5	0.5	0.5					
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	- 0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							155	4			16.6	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0			-		
Recall Mode	None	None			None	None	C-Max					
Walk Time (s)	5.0	5.0			5.0	5.0	5.0	- 50			6.50	
Flash Dont Walk (s)	11.0	11.0			11.0	11.0	11.0					
Pedestrian Calls (#/hr)	0	. 0			0	0	- 0		14.			
Act Effct Green (s)	52.4	52.4			52.4	52.4	19.6		80.0			
Actuated g/C Ratio	0.66	0.66			0.66	0.66	0.24		1.00			
v/c Ratio	0.31	0.73			0.26	0.38	0.18		0.03			
Control Delay	7.2	11.0		100	5.8	1.4	26.2		0.0	4,100		
Queue Delay	0.0	3.1			0.0	0.0	0.0		0.0			
Total Delay	7.2	14.1		4	5.8	1.4	26.2		0.0			
LOS	A	В			Α	Α	C		A			
Approach Delay		13.5	33		3.9		1					
Approach LOS		В			Α							

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 0 (0%), Referenced to phase 2:NBL and 6:, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.73

Intersection Signal Delay: 10.6

Intersection Capacity Utilization 84.5%

Analysis Period (min) 15

Intersection LOS: B
ICU Level of Service E

Splits and Phases: 2: 137 Ave & EW-N On Ramp

ø2	→ ø4
20 s	60 s
	←
	88 60 *

	*	1	7	4	ţ	لر	*	×	4	4	K	t
Lane Group	NBL	NBT.	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ች ሻ	^	74	ሻሻ	11	7	ሻሻ	11	7	7	11	74
Volume (vph)	206	295	191	161	1253	202	143	102	68	109	156	560
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900		1900	1900	1900
Storage Length (m)	60.0		105.0	60.0		40.0	160.0	55000	40.0	60.0	1707	60.0
Storage Lanes	2		1	2		1	2		1	1		1
Taper Length (m)	7.5		7.5	7.5		7.5	7.5		7.5	7.5		7.5
Lane Util, Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt	0.3008	2552	0.850	2000	174	0.850	233900	1000	0.850		0.00	0.850
Fit Protected	0.950		59572	0.950			0.950		3.303	0.950		0.000
Satd. Flow (prot)	3124	3221	1441	3124	3221	1441	3124	3221	1441	1610	3221	1441
Flt Permitted	0.134	2700	9,513	0.557	-	2000	0.644		5000	0.682	orr.	.344
Satd. Flow (perm)	441	3221	1441	1832	3221	1441	2118	3221	1441	1156	3221	1441
Right Turn on Red		022,	Yes	1002	0441	Yes	21.10	VEC,	Yes	1100	0241	Yes
Satd, Flow (RTOR)			208			220			52			549
Link Speed (k/h)		70	200		70	220		60	UL.		60	045
Link Distance (m)	*	178.2		4.	212.1			346.2			222.7	
Travel Time (s)		9.2			10.9	A.		20.8			13.4	
Peak Hour Factor	0.92	0.92	-0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		0.00
Adj. Flow (vph)	224	321	208	175	1362	220	155	111	74	118	0.92	0.92
Shared Lane Traffic (%)	224	321	200	1/5	1302	220	100	111	74	110	170	609
	224	321	000	475	1200	200	455	***	74	440	470	000
Lane Group Flow (vph) Enter Blocked Intersection	224 No		208	175	1362	220	155	111	74	118	170	609
	10.2531//	No	. No	No	No	. No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	1	7.4			7.4			7.4	40		7.4	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8	18		4.8	
Two way Left Turn Lane						12.02						
Headway Factor	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	.1.13	1.13
Turning Speed (k/h)	24	102	14	24		14	24	1. 12	14	24	1 528	14
Number of Detectors	0 1	_ 2	_ 1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0,0	- 0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel											A second	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	10000	Perm	Perm		Perm -	Perm	202	Perm	Perm	1	Perm
Protected Phases	11.070565	8	807000	0.4600000	4	04,770000		2		0.000	6	
Permitted Phases	8	- OTC	8	4	(5.5)	4	2	0	2	6		6
Detector Phase	8	8	8	4	4	4	2	2	2	6	6	6

	M	1	1	4	+	لر	*	×	1	4	K	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Switch Phase	1/1/1										-	-
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	66.7%	66.7%	66.7%	66.7%	66.7%	66.7%	33.3%	33.3%	33.3%	33.3%	33.3%	33.3%
Maximum Green (s)	36.0	36.0	36.0	36.0	36.0	36.0	16.0	16.0	16.0	16.0	16.0	16.0
Yellow Time (s)	3.5	3.5	3.5	-3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	4											- 3
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	. 0	0	. 0	0	0	0	0	0	0	0	0
Act Effct Green (s)	36.0	36.0	36.0	36.0	36.0	36.0	16.0	16.0	16.0	16.0	16.0	16.0
Actuated g/C Ratio	0.60	0.60	0.60	0.60	0.60	0.60	0.27	0.27	0.27	0.27	0.27	0.27
v/c Ratio	0.85	0.17	0.22	0.16	0.70	0.23	0.27	0.13	0.18	0.38	0.20	0.77
Control Delay	41.2	4.9	1.1	5.8	10.9	1.6	19.0	17.3	9.3	22.4	17.8	11.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	41.2	4.9	1.1	5.8	10.9	1.6	19.0	17.3	9.3	22.4	17.8	11.7
LOS	D	Α	A	Α	В	A	В	В	A	C	В	В
Approach Delay		14.6			9.2		3.5	16.3			14.3	
Approach LOS		В			A			В			В	

Area Type: CBD

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 47 (78%), Referenced to phase 4:SBTL and 8:NBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.85 Intersection Signal Delay: 12.1 Intersection Capacity Utilization 68.4%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 17: 137 Ave & Riel Extension

× 02	₩ 04
20 s	40 s
¥ ø6	↑ ₀₈
20 s	40 s - march and a company of the co

	M	1	1	4	1	لر	1	*	4	4	×	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	11	7	*	ተተ	7	ሻ	†	7	ጓ	4	*
Volume (vph)	300	585	113	15		258	68	9	75	66	64	39
Ideal Flow (vphpl)	1900	1900	1900	1900		1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	80.0		80.0	80.0		80.0	80.0	3388	50.0	50.0		50.0
Storage Lanes	1		1	1		1	- 1		1	1		1
Taper Length (m)	7.5		7.5	7.5	×	7.5	7.5		7.5	7.5		7.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	7.6779	1054.54	0.850	1000	- 1015	0.850	317.7		0.850		1.00	0.850
Flt Protected	0.950		370.00	0.950		1300000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	1789	3579	1601	1789	3579	1601	1789	1883	1601	1789	1883	1601
Flt Permitted	0.148		0.750	0.410			0.711	.000	1001	0.751	1000	1001
Satd. Flow (perm)	279	3579	1601	772	3579	1601	1339	1883	1601	1414	1883	1601
Right Turn on Red	2,0	- 0010	Yes		0070	Yes	1000	1000	Yes	1717	1000	Yes
Satd. Flow (RTOR)		W 50	123		100	280			82			42
Link Speed (k/h)		70	120		70	200		60	UZ		60	42
Link Distance (m)		298.4			178.2			283.5			144.3	
Travel Time (s)		15.3			9.2			17.0			8.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.00		0.00
Adj. Flow (vph)	326	636	123	16	1258	280	74	10	82	0.92	0.92	0.92
Shared Lane Traffic (%)	320	030	120	. 10	1200	200	79	10	02	72	70	42
Lane Group Flow (vph)	326	636	123	16	1258	280	74	40	00	70	70	40
Enter Blocked Intersection	No	No					74	10	82	72	70	42
Lane Alignment			No	No	. No	No	No	No	No	No	No	No
Median Width(m)	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
		7.4			7.4		100	3.7			:3:7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8		(4)	4.8			4.8		1	4.8	
Two way Left Turn Lane	0.00	0.00	0.00	0.00							7.74	
Headway Factor	0.99	. 0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	- 0.99
Turning Speed (k/h)	24		14	24		14	24	100	14	24	100	14
Number of Detectors	10.1	_ 2	1	1	2	35.1	- 1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex.	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	- 0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0,0	0.0	0.0	0.0	0.0	- 0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)	- 10	0.6		E The	0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel								March 1		. 2		0.0
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	1,755	Perm	Perm		Perm	Perm	1	Perm	Perm	0.0	Perm
Protected Phases	1	6	100000	1.7500	2	10.000		8		· viiii	4	1 50111
Permitted Phases	6	(50)	6	2	3.7%	2	. 8		8	4	7/	14
Detector Phase	1	6	6	2	2	2	8	8	8	4	4	7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		V	•	4	4	-	0	0	0	*	- 4	- 4

	4	1	1	4	1	لر	*	1	1	6	K	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Switch Phase		1.5	- 1	2-1	1-3	1540.75			1377			11 1 10 10 10 10 10 10 10 10 10 10 10 10
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	8.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (s)	12.0	40.0	40.0	28.0	28.0	28.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	20.0%	66.7%	66.7%	46.7%	46.7%	46.7%	33.3%	33.3%	33.3%	33.3%	33.3%	33.3%
Maximum Green (s)	8.0	36.0	36.0	24.0	24.0	24.0	16.0	16.0	16.0	16.0	16.0	16.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	- 3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lag			Lead	Lead	Lead	1772	19250		107	100000	999
Lead-Lag Optimize?	Yes			Yes	Yes	Yes						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	None
Walk Time (s)	100	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		. 0	0	. 0	. 0	0	. 0	0	0	0	0	. 0
Act Effct Green (s)	45.2	46.0	46.0	33.2	33.2	33.2	8.7	8.7	8.7	8.7	8.7	8.7
Actuated g/C Ratio	0.75	0.77	0.77	0.55	0.55	0.55	0.14	0.14	0.14	0.14	0.14	0.14
v/c Ratio	0.79	0.23	0.10	0.04	0.64	0.28	0.38	0.04	0.27	0.35	0.26	0.16
Control Delay	32.1	3.2	1.0	5.1	6.6	0.6	28.0	20.4	8.4	26.9	24.0	9.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.1	3.2	1.0	5.1	6.6	0.6	28.0	20.4	8.4	26.9	24.0	9.1
LOS	C	Α	Α	Α	Α	Α	C	C	Α	C	C	A
Approach Delay		11.6		200	5.5			17.9	**		21.7	
Approach LOS		В			A			В			C	

Other

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 60

Area Type:

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79 Intersection Signal Delay: 9.4

Intersection Capacity Utilization 69.0%

Analysis Period (min) 15

Intersection LOS: A ICU Level of Service C

Splits and Phases: 20: 137 Ave & East Collector

₩ ø2	A) 01	× 04
28 s	123	20 s
↑ ø6		₹ a8
40 s		20 s

	1	-	+	1	1	1			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	NAME OF	(C. 100)	
Lane Configurations	ኻኻ		^	Charles Manual Street, Manual Street, Co.	ኘካ		1400 A D S S S S S S S S S S S S S S S S S S	And the Control of th	0.0000000000000000000000000000000000000
Volume (vph)	207	1129	747	673	841	251			
ideal Flow (vphpl)	1900	1900			1900	1900			
Storage Length (m)	50.0	1000	1000	50.0	100.0	0.0			
Slorage Lanes	2			2	1	1			
Taper Length (m)	7.5			7.5	7.5	7.5			
Lane Util. Factor	0.97	0.95	0.95	0.88	0.97	1.00			
Frt	0.07	0.00	0.00	0.850		0.850			
Fit Protected	0.950			0.000	0.950	0.000			
Satd. Flow (prot)	3471	3579	3579	2818	3471	1601			
Flt Permitted	0.277	00/0	0070	2010	0.950	1001			
Satd. Flow (perm)	1012	3579	3579	2818	3471	1601			
Right Turn on Red	1012	0010	0010	Yes	34/1	Yes			1.0
Satd. Flow (RTOR)		. 70		732		97			
Link Speed (k/h)		50	70	132	50	91			
Link Distance (m)		298.4	364.0		269.6				
Travel Time (s)		21.5	18.7		19.4				
Peak Hour Factor	0.92	0.92	0.92	0.02		0.02			
Adj. Flow (vph)	225	1227	812	0.92	0.92	0.92			
Shared Lane Traffic (%)	220	1221	812	732	914	273			
	200	1007	040	700	044	070		1.0	
Lane Group Flow (vph) Enter Blocked Intersection	225	1227	812	732	914	273			
	No	No	No	No	No	No		08	
Lane Alignment	Left	Left	Left	Right	Left	Right			
Median Width(m)		7.4	7.4	700	7.4	1.0			
Link Offset(m)		0.0	0.0		0.0				
Crosswalk Width(m)		4.8	4.8		4.8			OIM	
Two way Left Turn Lane	0.00	0.00							W.
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99		35	.12 5%
Turning Speed (k/h)	24			14	24	14			
Number of Detectors	1	2	2	1	1	1		8	
Detector Template	Left	Thru	Thru	Right	Left	Right			
Leading Detector (m)	2.0	10.0	10.0	2.0	2.0	2.0		I I I I I I I I I I I I I I I I I I I	
Frailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0		The state of the s	
Detector 1 Size(m)	2.0	0.6	0.6	2.0	2.0	2.0			
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex			V = 10
Detector 1 Channel	19/12	0.03423	20100	THE SHOWLY	Propagato	20.54			
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0		The Control of the Co	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	141		
Detector 2 Position(m)		9.4	9.4						
Detector 2 Size(m)		0.6	0.6			- 44	9		*17
Detector 2 Type		CI+Ex	CI+Ex						
Detector 2 Channel									
Detector 2 Extend (s)		0.0	0.0						
urn Type	Perm			Perm		Perm			
Protected Phases		4	8		6				
Permitted Phases	4			8		6		100	
Detector Phase	4	4	8	8	6	6			

	20	-	1	1	1	
-					4	

Switch Phase	outh.	80,00	NAME OF STREET	41/03/01/02	Sen Illace	A SESSIPAV	2-07	e-portes	44,712.49	277	- TOTAL	241	cu principal
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0							
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	+:						12
Total Split (s)	24.0	24.0	24.0	24.0	21.0	21.0							35
Total Split (%)	53.3%	53.3%	53.3%	53.3%	46.7%	46.7%							
Maximum Green (s)	20.0	20.0	20.0	20.0	17.0	17.0							
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5							
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5							
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0							
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0							
Lead/Lag	200	**		- 14									
Lead-Lag Optimize?													
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	9		14.				
Recall Mode	None	None	None	None	Max	Max							
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	N.			100			
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0							
Pedestrian Calls (#/hr)	0	0	. 0	0	0	0	1	9					
Act Effct Green (s)	19.1	19.1	19.1	19.1	17.0	17.0							
Actuated g/C Ratio	- 0.43	0.43	0.43	0.43	0.38	0.38	*	- 1					
v/c Ratio	0.51	0.79	0.52	0.45	0.68	0.40							
Control Delay	14.1	15.6	10.6	1.8	14.8	8.8							
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0							
Total Delay	14.1	15.6	10.6	1.8	14.8	8.8		250		00	4		
LOS	В	В	В	Α	В	Α							
Approach Delay		15.3	6.4	1104	13.4		. 3	2 :					- 61
Approach LOS		В	A		В								

Intersection Summary Area Type: Other

Cycle Length: 45

Actuated Cycle Length: 44.2

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.79 Intersection Signal Delay: 11.5 Intersection Capacity Utilization 61.9%

Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 7: 137 Ave & Sir Winston Church Hill/184 St

	1	-	•	1	-	1	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		11	7"	*	Account to the last of the las		22010			ሻሻ	NUMBER OF STREET	74
Volume (vph)	0		150			0	0	0	- 0		0	150
Ideal Flow (vphpl)	1900		1900	1900	1900	1900	1900	1900	1900		1900	1900
Storage Length (m)	0.0		150.0	70.0	11444	0.0	0.0		0.0			100.0
Storage Lanes	0		1	1		0	0		0			1
Taper Length (m)	7.5		7.5	7.5		7.5	7.5		7.5	1		7.5
Lane Util. Factor	1.00		1.00	1.00	0.95	1.00	1.00	1.00	1.00		1.00	1.00
Frt	92372		0.850	1000			1115			0.01	1.00	0.850
Fit Protected			Coleman	0.950						0.950		0.000
Satd. Flow (prot)	0	3579	1601	1789	3579	0	0	0	0		- 0	1601
Fit Permitted	72	: 0.777.070	0.556	0.369	2515	-0.00	. (5)			0.950		1001
Sald. Flow (perm)	0	3579	1601	695	3579	0	0	0	0		0	1601
Right Turn on Red	12.5		Yes	1000	7	Yes	- 7		Yes			Yes
Satd. Flow (RTOR)			163			1		12	1.00	- 11		163
Link Speed (k/h)		50	0.00		50			50			50	100
Link Distance (m)		481.1			115.3	431		257.4			209.7	
Travel Time (s)		34.6			8.3			18.5	1		15.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0,92	0.92	0.92	0.92	0,92	0.92
Adj. Flow (vph)	0	652	163	54	1196	0	0	0.02	0.02	489	0.02	163
Shared Lane Traffic (%)			115							400		103
Lane Group Flow (vph)	0	652	163	54	1196	0	0	0	0	489	0	163
Enter Blocked Intersection	No	No	No	No	· No	No	No	No	No	No.	. No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	. ugiit	Lon	7.4	rugin	Lon	7.4	rugin	Lon	7.4	rugin
Link Offset(m)	24.1	0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8	ggradia	South a	4.8		HUN	4.8		3.6	4.8	
Two way Left Turn Lane	-	1.0			4.0		160	4.0		280	4.0	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.00	25	24	0,00	14	24	0.00	14	24	0.55	14
Turn Type	- 57	-570	Free	Perm	201 2	4.11	7/20 5	- 4	-0.10	custom	Asses	Free
Protected Phases		4	.,,,,,		8		largo.	1.0	0, 3	Cusion	1000	1100
Permitted Phases			Free	8				0.4				Free
Minimum Split (s)		20.0	1.00	20.0	20.0				17	20.0		1166
Total Split (s)	0.0	50.0	0.0	50.0	50.0	0.0	0.0	0.0	0.0	30.0	0.0	0.0
Total Split (%)	0.0%	62.5%	0.0%	62.5%	62.5%	0.0%	0.0%	0.0%	0.0%	37.5%	0.0%	0.0%
Maximum Green (s)	0.070	46.0	0.070	46.0	46.0	0.070	0.070	0.078	0.076	26.0	0.078	0,076
Yellow Time (s)		3.5		3.5	3.5					3.5		100
All-Red Time (s)		0.5	3.0	0.5	0.5					0.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0
Lead/Lag	7.0	4.0	7.0	4.0	4.0	4.0	4.0	4,0	4.0	4.0	4.0	4.0
Lead-Lag Optimize?	106						Mil. Si					
Walk Time (s)		5.0	100	5.0	5.0				27,1	FO		
Flash Dont Walk (s)		11.0			11.0					5.0		
Pedestrian Calls (#/hr)				11.0					001/2011	11.0		
Act Effet Green (s)		46.0	90.0	0	0					0		00.0
Actuated g/C Ratio			80.0	46.0	46.0					26.0		80.0
v/c Ratio		0.58	1.00	0.58	0.58					0.32		1.00
Control Delay		0.32	0.10	0.14	0.58					0.43		0.10
Conitor Delay		9.4	0.1	8.8	8.5					22.7		0.1

	1	->	*	1	•	1	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	1000	0.0	0.0	0.0	0.5	-10			- 576	0.0	1000	0.0
Total Delay		9.4	0.1	8.8	9.0					22.7		0.1
LOS		A	- A	A	A	12	*/:			C		A
Approach Delay		7.5			9.0					CHOSTIC AND		0.4
Approach LOS	N.	. A	0		Α							

Intersection Summary Area Type:

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 52 (65%), Referenced to phase 2: and 6:SBL, Start of Green

Natural Cycle: 40 Control Type: Pretimed Maximum v/c Ratio: 0.58

Intersection Signal Delay: 10.5 Intersection Capacity Utilization 82.3%

Intersection LOS: B ICU Level of Service E

Analysis Period (min) 15

Spins and Phases. (: 137 Ave & N-EVV	
	→ ø4
	50 s
e6	€ 88
30 s	50 \$ 60 \$ 60 \$ 60 \$ 60 \$ 60 \$ 60 \$ 60 \$

	•	-	7	*	4	*	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	THE RESERVE THE PERSON NAMED IN			ተተ	7	ሻሻ		7	SHOW MANY		
Volume (vph)	200		0	0	850	850		0	200	0	0	0
Ideal Flow (vphpl)	1900		1900	1900	1900	1900		1900	1900	1900	1900	1900
Storage Length (m)	70.0	A	0.0	- 0.0	AF-SG.	100.0			100.0	0.0	,	0.0
Storage Lanes	1		0	0		1	2		1	0		0
Taper Length (m)	7.5		7.5	7.5		7.5	7.5	EL A	7.5	7.5		7.5
Lane Util. Factor	1.00		1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt	AGES	HOUSE	1000	- 10000	0.5015-50	0.850		.000	0.850	0.850		,,,,,
Fit Protected	0.950					1577255	0.950		2001			
Satd. Flow (prot)	1789		0	0	3579	1601	3471	0	1601	0	. 0	0
Flt Permitted	0.280		85		2202	41350	0.950	0.70	1177			
Sald. Flow (perm)	527		0	0	3579	1601	3471	. 0	1601	0	0	0
Right Turn on Red	5000	7777	Yes		2222	Yes	2000		Yes			Yes
Sald. Flow (RTOR)			3,557	Y		924			217		=0.00	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		115.3			212.1		1000	260.3			243.0	
Travel Time (s)		8.3			15.3			18.7			17.5	
Peak Hour Factor	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	217	924	0	0	924	924	326	0	217	0	0	0.02
Shared Lane Traffic (%)					13.9			Car Si				
Lane Group Flow (vph)	217	924	0	0	924	924	326	0	217	0	0	0
Enter Blocked Intersection	No	No	No	. No	No	No	No	. No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	. (5)	7.4			7.4			7.4		Lon	7.4	, again
Link Offset(m)		0.0	101		0.0			0.0			0.0	
Crosswalk Width(m)	100	4.8			4.8	5	an Albert	4.8			4.8	
Two way Left Turn Lane	144	1.0			7.0			4.0			4.0	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0,99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.00	14	24	0.00	25	24	. 0.00	25	24	0.00	14
Turn Type	Perm	11 15 15	1020			Perm	custom	11 22	Free		200	
Protected Phases	· viiii	4	1		8	, Gilli	Custom		1100			
Permitted Phases	. 4	100	1	3		8	2		Free			
Minimum Split (s)	20.0	20.0		,	20.0	20.0	20.0		1100			
Total Split (s)	59.0	59.0	0.0	0.0	59.0	59.0	21.0	0.0	. 0.0	0.0	0.0	0.0
Total Split (%)	73.8%	73.8%	0.0%	0.0%	73.8%	73.8%	26.3%	0.0%	0.0%	0.0%	0.0%	0.0%
Maximum Green (s)	55.0		0.070	0.070	55.0	55.0	17.0	0.070	0.076	0.076	0.076	0.076
Yellow Time (s)	3.5	3.5	4200		3.5	3.5	3.5					
All-Red Time (s)	0.5	0.5			0.5	0.5	0.5		20			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4,0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	4,0	4.0	14,0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead-Lag Optimize?						272	17.0		11+			
Walk Time (s)	5.0	5.0			5.0	5.0	5.0					
Flash Dont Walk (s)	11.0	11.0		1	11.0	11.0	11.0					
Pedestrian Calls (#/hr)	0	0			0	0	0		7 450 5 5 1150			
Act Effct Green (s)	55.0	55.0			55.0	55.0	17.0		80.0			
Actuated g/C Ratio	0.69	0.69			0.69	0.69	0.21		1.00			
//c Ratio	0.60	0.38		*	0.38	0.67	0.44		0.14			
Control Delay	22.0	4.8			5.8	3.0	29.6		0.2			

	1		>	1	-	*	1	1	1	>	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR -	SBL	SBT	SBR
Queue Delay	0.0	0.2	West Free Chill	704.15.000	0.0	0.0	0.0	7	0.0		Marie Contract	-
Total Delay	22.0	5.0			5.8	3.0	29.6		0.2			
LOS	C	A			A	A	C		A			
Approach Delay		8.2			4.4							
Approach LOS		Α			A							

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 0 (0%), Referenced to phase 2:NBL and 6:, Start of Green

Natural Cycle: 60 Control Type: Pretimed Maximum v/c Ratio: 0.67 Intersection Signal Delay: 7.7 Intersection Capacity Utilization 82.3%

Intersection LOS: A ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 2: 137 Ave & EW-N On Ramp

ø2	→ ø4
21:5	59 8 37 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	← ₂
	60 50 •

	4	1	1	4	1	لر	*	×	1	6	K	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	77	^	74	ሻሻ	^	74	ሻሻ	44	74	7	11	7
Volume (vph)	303		120		197	579	528	493	329		416	387
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	60.0		105.0			40.0	160.0		40.0	60.0	137	60.0
Storage Lanes	2		1	2		1	2		1	1		1
Taper Length (m)	7.5		7.5	7.5		7.5	7.5	S	7.5	7.5	1	7.5
Lane Util, Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt		LOAD ST	0.850		11.5	0.850			0.850		200	0.850
Flt Protected	0.950		1000000	0.950		- Carpina	0.950		0.000.000	0.950		
Satd. Flow (prot)	3124	3221	1441	3124	3221	1441	3124	3221	1441	1610	3221	1441
Flt Permitted	0.618	57777E	14,588	0.233	8300	17.5555	0.388		5530	0.382		3.55
Satd. Flow (perm)	2032	3221	1441	766	3221	1441	1276	3221	1441	648	3221	1441
Right Turn on Red	120020	25000	Yes	1,432.54	1 5000	Yes	0746	33337	Yes	1.5	300	Yes
Satd. Flow (RTOR)			130			356			358			176
Link Speed (k/h)		70	- 35		70	, 200		60	5580		60	.,,
Link Distance (m)	8	178.2	100		212.1			346.2			222.7	
Travel Time (s)		9.2			10.9			20.8			13.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	329	853	130	298	214	629	574	536	358	108	452	421
Shared Lane Traffic (%)	-33		-		9	- 15	40.500		2			
Lane Group Flow (vph)	329	853	130	298	214	629	574	536	358	108	452	421
Enter Blocked Intersection	No	No	No	No	No	No	- No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		. 7.4		7	7.4			7.4	· · · · · ·		7.4	rugin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	21
Two way Left Turn Lane		31119									1.0	
Headway Factor	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13
Turning Speed (k/h)	24		14	24		14	24		14	24	,	14
Number of Detectors	1	-2	1	1	2	1	1	2	- 1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	- 10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel		01.41	or an	01.11	O, LLA	OI LA	OI. LA	OI. LA	01.24	01.120	OI.FV	CITLA
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4	0.0	0.0	9.4	0,0	0.0	9.4	0.0	0.0	9.4	0.0
Detector 2 Size(m)	1.0	0.6		18	0.6			0.6			0.6	- 74
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		- Ci - Lin			OI. LA			01.20	17.3	= 8	OHLA	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	0.0	Perm	pm+pt	V.V	Perm	pm+pt	0.0	Perm	nmant	0.0	Perm
Protected Phases	3	a	Citi	7	4	i citti	pin/pt	2	Cilli	pm+pt	0	renn
Permitted Phases	8	8	8	1			2	4	2	0	6	0
Detector Phase	3	8	8	7	A	4	5	2	2 2	0		6
JOSOTO I HOOG	ಿ	0	0	1	198		0	- 4	- 4		6	0

	M	1	1	4	1	لر	1	×	4	6	×	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Switch Phase						A STATE OF						
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	8.0	20.0	20.0	8.0	20.0	20.0	8.0	20.0	20.0	8.0	20.0	20.0
Total Split (s)	8.0	22.0	22.0	8.0	22.0	22.0	10.0	20.0	20.0	10.0	20.0	20.0
Total Split (%)	13.3%	36.7%	36.7%	13.3%	36.7%	36.7%	16.7%	33.3%	33.3%	16.7%	33.3%	33.3%
Maximum Green (s)	4.0	18.0	18.0	4.0	18.0	18.0	6.0	16.0	16.0	6.0	16.0	16.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0,0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	Max	Max	None	Max	Max
Walk Time (s)	15	5.0	5.0		5.0	5.0		5.0	5.0	-	5.0	5.0
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0	11.0	77.50	11.0	11.0
Pedestrian Calls (#/hr)		. 0	0		0	-0		0	0	74.50	0	0
Act Effct Green (s)	22.0	18.0	18.0	22.0	18.0	18.0	22.8	18.0	18.0	21.9	16.0	16.0
Actuated g/C Ratio	0.37	0.30	0.30	0.37	0.30	0.30	0.38	0.30	0.30	0.36	0.27	0.27
v/c Ratio	0.40	0.88	0.25	0.68	0.22	0.92	0.86	0.55	0.52	0.33	0.53	0.82
Control Delay	13.2	33.2	5.0	21.2	16.5	31.7	29.6	21.2	5.7	13.4	21.4	27.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	13.2	33.2	5.0	21.2	16.5	31.7	29.6	21.2	5.7	13.4	21.4	27.9
LOS	В	C	A	C	В	C	C	C	Α	В	C	C
Approach Delay	15	25.4	05.1		26.1			20.7			23.3	
Approach LOS		C			C			C			C	

Area Type: Cycle Length: 60

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 4:SBTL and 8:NBTL, Start of Green

CBD

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92

Intersection Signal Delay: 23.7

Intersection Capacity Utilization 77.5%

Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service D

Solits and Phases: 17: 137 Ave & Riel Extension

√ ø1	1 02	M 03	₩ 04
10 s	20 s	8 8	22 s
↑ ø5	¥ e6	W 07	↑ ø8
10s	20 s	8 \$	22 s

	4	1	7	4	1	لر	*	×	1	6	K	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	ተተ	74	ሻ	ተተ	79	3	1	7	ሻ	1	194
Volume (vph)	227	858	35	141	384	100	326	42	430	68	17	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	80.0	40.000	80.0	80.0		80.0	80.0		50.0	50.0	a sings	50.0
Storage Lanes	- 1		1	1		1	1		1	1		1
Taper Length (m)	7.5	1	7.5	7.5	111	7.5	7.5		7.5	7.5		7.5
Lane Util. Factor	1.00	0.95	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		-	0.850			0.850	3		0.850	1.00	1.00	0.850
Flt Protected	0.950			0.950			0.950			0.950		0.000
Satd. Flow (prot)	1789	3579	1601	1789	3579	1601	1789	1883	1601	1789	1883	1601
Flt Permitted	0.506	00,0	1001	0.244	00.0	1001	0.493	1000	1001	0.727	1000	1001
Satd. Flow (perm)	953	3579	1601	460	3579	1601	929	1883	1601	1369	1883	1601
Right Turn on Red	000	- 00,0	Yes	100	00.0	Yes	040	1000	Yes	1000	1000	Yes
Satd. Flow (RTOR)			38			109		20	296			26
Link Speed (k/h)		70	00		70	100		60	230		60	20
Link Distance (m)		292.3			178.2			282.3			144.3	
Travel Time (s)		15.0			9.2			16.9				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92		0.00	0.00	8.7	0.00
Adj. Flow (vph)	247	933	38					0.92	0.92	0.92	0.92	0.92
	241	933	30	153	417	109	354	46	467	74	18	26
Shared Lane Traffic (%)	047	000	20	400	147	400	251	10	107		40	
Lane Group Flow (vph)	247	933	38	153	417	109	354	46	467	74	18	26
Enter Blocked Intersection	No	No	No	No	No	No	No	No	- No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		7.4			7.4		- 2	3.7	100		3.7	T-1
Link Offset(m)		0.0			0.0			0.0			0.0	.0
Crosswalk Width(m)	15	4.8			4.8			4.8			4.8	
Two way Left Turn Lane	in the reservoir	3-112-22-24		villas sego	12722	12120		II. 1785 (552) 7		GP D B		
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2	1	1	- 2.	1	1	2-	. 1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	, 0.0	0.0	-0.0	0.0	0.0	0.0	0.0	: 0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4	922	98.00	9.4	23.5	05495	9.4		7.50	9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		10				- 0		-			01.11	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	0.0	Perm	Perm	0.0	Perm	pm+pt	0.0	Perm	Perm	0.0	Perm
Protected Phases) Sitti	6	Com	e smil	2	Cin	butth	0	reini	Fellill		Pelili
Permitted Phases	C	0	0	0	4	0	0	8	0	. 2	4	
Detector Phase	6	6	6	2	2	2	8	٥	8	4	9	4
Delector Filase	0	0	0	2	- 2	4	3	8	8	4	4	4

	1	1	1	M	1	7	*	×	4	4	K	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Switch Phase	-300 1100	ACT CATE	0.000	A THE STREET	3416		25.74.100		1,-00	diferential	CONTRACTOR OF THE PARTY OF THE	W. Carlot
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4,0	4.0	4.0
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	8.0	- 20.0	20.0	20.0	20.0	20.0
Total Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	14.0	34.0	34.0	20.0	20.0	20.0
Total Split (%)	47.7%	47.7%	47.7%	47.7%	47.7%	47.7%	21.5%	52.3%	52.3%	30.8%	30.8%	30.8%
Maximum Green (s)	27.0	27.0	27.0	27.0	27.0	27.0	10.0	30.0	30.0	16.0	16.0	16.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	-3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead			Lag	Lag	Lag
Lead-Lag Optimize?							Yes			Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	None
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	- 0	. 0	0	0	. 0	0		0	0	0	0	0
Act Effct Green (s)	36.0	36.0	36.0	36.0	36.0	36.0	21.0	21.0	21.0	8.9	8.9	8.9
Actuated g/C Ratio	0.55	0.55	0.55	0.55	0.55	0.55	0.32	0.32	0.32	0.14	- 0.14	0.14
v/c Ratio	0.47	0.47	0.04	0.60	0.21	0.12	0.82	0.08	0.65	0.39	0.07	0.11
Control Delay	14.4	10.9	3.7	26.5	8.8	- 2.7	34.2	13.2	10.6	30.9	23.2	- 10.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.4	10.9	3.7	26.5	8.8	2.7	34.2	13.2	10.6	30.9	23.2	10.9
LOS	В	В	Α	C	A	Α	C	В	В	C	C	В
Approach Delay	140	11.4			11.8			20.4		(A)	25.3	
Approach LOS		В			В			C			C	

Intersection Summary Area Type:

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Other

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82 Intersection Signal Delay: 14.8 Intersection Capacity Utilization 66.3%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

₩ ø2	7 03	¥ ₀₄			
31 s	14 \$ 30.50	20 s			
↑ ø6	× ∞8				
31 s	34 \$ 1 - 4 \$				

	*		—	1	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻሻ		^	77	77	7	
Volume (vph)	735	164	1005	975	676	77	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (m)	65.0			50.0	100.0	0.0	
Storage Lanes	2			2	1	1	
Taper Length (m)	7.5			7.5	7.5	7.5	A COLOR OF THE COLOR
Lane Util. Factor	0.97	0.95	0.95	0.88	0.97	1.00	
Frt	-			0.850		0.850	B
Flt Protected	0.950				0.950	- GERMAN	
Satd. Flow (prot)	3471	3579	3579	2818	3471	1601	
Flt Permitted	0.167				0.950	1000	
Satd. Flow (perm)	610	3579	3579	2818	3471	1601	
Right Turn on Red	V214-40	55558	. (551.3)	Yes	10000	Yes	
Satd. Flow (RTOR)	100			1060	200	-84	
Link Speed (k/h)	117	60	60	1	60	2.0	
Link Distance (m)		292.3	424.4		231.0		
Travel Time (s)		17.5	25.5		13.9		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	T 35
Adj. Flow (vph)	799	178	1092	1060	735	84	
Shared Lane Traffic (%)	170			1000		1.7	Early Company of the
Lane Group Flow (vph)	799	178	1092	1060	735	84	
Enter Blocked Intersection	No	No	No	No	No	- No	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(m)		7.4	7.4	,	7.4		
Link Offset(m)	-	0.0	0.0		0.0		
Crosswalk Width(m)	and You	4.8	4.8		4.8		5 Table 1 Tabl
Two way Left Turn Lane		4.0	7.0		4.0		
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	Committee the committee of the committee
Turning Speed (k/h)	24	0.00	0.00	14	24	14	27.11
Number of Detectors	10 1	2	2	- 11	1	. 1	COSTON DE LA DELIGIO DE LA COSTONIA DEL COSTONIA DE LA COSTONIA DE LA COSTONIA DEL COSTONIA DE LA COSTONIA DEL COSTONIA DELIGIO DE LA COSTONIA DE LA COSTONI
Detector Template	Left	Thru	Thru	Right	Left	Right	2
Leading Detector (m)	2.0	10.0	10.0	2.0	2.0	2.0	V
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	- 0.0	0.0	0.0	0.0	0.0	0.0	All records to the second to the second to
Detector 1 Size(m)	2.0	0.6	0.6	2.0	2.0	2.0	
Detector 1 Type	The second secon	CI+Ex			CI+Ex		and an interest to the same
Detector 1 Channel	Oi.LA	OILLA	DIVEN	OILLA	OILLA	OILLA	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	AND WEST AND WARREN TO BE
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	Annual Control of the
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	0.0	9.4	9.4	0.0	0.0	0.0	
Detector 2 Size(m)		0.6	0.6				
Detector 2 Type		CI+Ex	CI+Ex				
Detector 2 Channel		CITEX	CITEX	0.00			Annual College Control of the College
		0.0	0.0				
Detector 2 Extend (s)	nmant	0.0	0.0	Derm		Perm	Tarbina and the same of the sa
Turn Type Protected Phases	pm+pt	183	0	Perm	0	reim .	
	4	4	8		6	0	
Permitted Phases Detector Phase	7	74		8		6	
Delector Fridse	1	4	8	8	6	0	

		-		_	-	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Switch Phase		-	CAMPAGE CO.	Contraction of the Contraction o			
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.0	20.0	20.0	20.0	20.0	20.0	1207
Total Split (s)	16.0	40.0	24.0	24.0	20.0	20.0	
Total Split (%)	26.7%	66.7%	40.0%	40.0%	33.3%	33.3%	
Maximum Green (s)	12.0	36.0	20.0	20.0	16.0	16.0	
Yellow Time (s)	3.5	3.5	3,5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	Lead	9	Lag	Lag			
Lead-Lag Optimize?	Yes		Yes	Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0.	3.0	(4)
Recall Mode	None	None	None	None	Max	Max	
Walk Time (s)		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk (s)		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		. 0	. 0	0	0	0	
Act Effct Green (s)	36.0	36.0	20.0	20.0	16.0	16.0	
Actuated g/C Ratio	0.60	0.60	0.33	0.33	0.27	0.27	
v/c Ratio	0.85	0.08	0.92	0.64	0.79	0.17	
Control Delay	21.9	5.2	33.3	3.3	28.5	. 5.9	The state of the s
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.9	-5.2	33.3	. 3.3	28.5	5.9	Note:
120			-	1.0		100 100 100	

Intersection Summary
Area Type: Other
Cycle Length: 60

C

A

B

18.8

C

8

18.5

Actuated Cycle Length: 60 Natural Cycle: 60

LOS

Approach Delay

Approach LOS

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.92 Intersection Signal Delay: 20.2 Intersection Capacity Utilization 78.0%

Intersection LOS: C ICU Level of Service D

C

C

26.2

Analysis Period (min) 15

Splits and Phases: 16: 137 Ave &

Lanes, Volumes, Timings
7: 137 Ave & Riel Drive (combined intersection)

	1	-	+	1	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻሻ	44	44	77		7	
Volume (vph)	735			975		77	
Ideal Flow (vphpl)	1900	1900		1900		1900	
Storage Length (m)	65.0	1 1		50.0	100.0	0.0	
Storage Lanes	2			2		1	
Taper Length (m)	7.5			7.5		7.5	
Lane Util. Factor	0.97	0.95	0.95	0.88	0.97	1.00	
Frt	-5/20	12637	0.000000	0.850		0.850	2 1 5 600
Flt Protected	0.950			52M 500EK	0.950	i contract	
Satd. Flow (prot)	3471	3579	3579	2818		1601	4.0
Flt Permitted	0.129	122.00	0.000	127700	0.950		
Satd. Flow (perm)	471	3579	3579	2818	3471	1601	12.00
Right Turn on Red	375.75	77.5	2000	Yes	200	Yes	
Satd. Flow (RTOR)				1011	Section .	84	
Link Speed (k/h)		60	60	17.5	60		
Link Distance (m)		358.2	424.4		231.0		N. Carlotte
Travel Time (s)		21.5	25.5		13.9		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	799	200	1133	1060	735	84	
Shared Lane Traffic (%)	1.00	200	1100	1000	100	04	
Lane Group Flow (vph)	799	200	1133	1060	735	84	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(m)	Lon	7.4	7.4	rugin	7.4	rugin	
Link Offset(m)	1	0.0	0.0		0.0	1.5	
Crosswalk Width(m)		4.8	4.8		4.8		4
Two way Left Turn Lane		4.0	4,0		4.0		
Headway Factor	0.99	0.99	0.99	0.99	- 0.99	0.99	est decided to the second
Turning Speed (k/h)	24	0.99	0.33	14	24	14	
Number of Detectors	1	2	. 2	1	1	1	to the Windowski and the second
Detector Template	Left		Thru		100		
Leading Detector (m)	2.0	Thru 10.0	- 10.0	Right	Left	Right	I discount to the second second
Trailing Detector (m)	0.0	B		2.0	2.0	2.0	The state of the s
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	A DESCRIPTION OF THE PROPERTY
		0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6	0.6	2.0	2.0	2.0	
Detector 1 Type :	CITEX	CI+EX	CI+Ex	CI+EX	CI+EX	CITEX	The I was a second
Detector 1 Channel	0.0	0.0	0.0	0.0			X was a second of the second o
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	State of the state
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	7300
Detector 2 Position(m)		9.4	9.4				
Detector 2 Size(m)		0.6	0.6)1			A TOTAL OF THE REAL PROPERTY.
Detector 2 Type		CI+Ex	CI+Ex				
Detector 2 Channel			V 24-12-2	100			
Detector 2 Extend (s)		0.0	0.0				
Turn Type	pm+pt			Perm		Perm	
Protected Phases	7	4	8		6		
Permitted Phases	4		10	8		6	
Detector Phase	7	4	8	8	6	6	

1	-	-	1	1	1	
	100000000000000000000000000000000000000					

Switch Phase			S. Letter	17.		A STATE OF	and the second s
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.0	20.0	20.0	20.0	20.0	20.0	10 m
Total Split (s)	19.0	50.0	31.0	31.0	25.0	25.0	
Total Split (%)	25.3%	66.7%	41.3%	41.3%	33.3%	33.3%	
Maximum Green (s)	15.0	46.0	27.0	27.0	21.0	21.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	. 4
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	Lead		Lag	Lag			
Lead-Lag Optimize?	Yes		Yes	Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	None	C-Max	C-Max	
Walk Time (s)		5.0	5.0	5.0	5.0	.5.0	and the contraction of the second second second second second
Flash Dont Walk (s)		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	120	. 0	0	0	0	0	The state of the s
Act Effct Green (s)	46.0	46.0	27.0	27.0	21.0	21.0	
Actuated g/C Ratio	0.61	0.61	0.36	0.36	0.28	0.28	And the second s
v/c Ratio	0.90	0.09	0.88	0.64	0.76	0.17	
Control Delay	31.8	6.1	32.3	3.8	30.5	6.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	31.8	6.1	32.3	3.8	30.5	6.2	
.os	C	Α	C	Α	C	A	
Approach Delay		26.7	18.5	-	28.0	Let D	programme and the second secon
Approach LOS		C	В		C		

Area Type: Cycle Length: 75

Actuated Cycle Length: 75

Offset: 48 (64%), Referenced to phase 2: and 6:SBL, Start of Green

Other

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 22.5

Intersection Capacity Utilization 79.1%

Analysis Period (min) 15

Intersection LOS: C ICU Level of Service D

Splits and Phases: 16: 137 Ave &

	→ ø4	
	50 s	The second states of the second secon
√ ø6	A 87	4 — e8
5.	19 \$	31's

	4	1	1	4	1	لر	1	×	4	4	K	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ኻኻ	11	7	ሻሻ	COLUMN TO SECURITION OF THE PARTY OF THE PAR				7	۲		7
Volume (vph)	506	197	295	176		395		120	143			599
Ideal Flow (vphpl)	1900	1900	1900	1900		1900		1900	1900		1900	1900
Storage Length (m)	85.0	- 1	125.0	110.0		110.0		118	80.0		1000	90.0
Storage Lanes	2		1	2		1	2		1	1		1
Taper Length (m)	7.5		7.5	7.5		7.5			7.5	7.5		7.5
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00		1.00	1.00	1.00	1.00	1.00
Frt	1,500.0	- 713	0.850			0.850			0.850	1.00	1.00	0.850
Flt Protected	0.950		Darren	0.950		100000	0.950			0.950		0.000
Satd. Flow (prot)	3471	3579	1601	3471	3579	1601	3471	1883	1601	1789	1883	1601
Flt Permitted	0.950	(400)	227507	0.618		1,557	0.256	1505	1001	0.674	1000	1001
Satd. Flow (perm)	3471	3579	1601	2258	3579	1601	935	1883	1601	1269	1883	1601
Right Turn on Red	200	377.75	Yes	7222	10.0	Yes		1000	Yes	1200	1000	Yes
Satd. Flow (RTOR)			321			225	9 11 2		155			622
Link Speed (k/h)		70			70	220		50	100		50	022
Link Distance (m)		357.6	200		318.3		No.	153.1			171.0	
Travel Time (s)		18.4			16.4			11.0			12.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	550	214	321	191	1136	429	220	130	155	120	310	651
Shared Lane Traffic (%)					1100	720		100	100	120	010	001
Lane Group Flow (vph)	550	214	321	191	1136	429	220	130	155	120	310	651
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	7.4	rugin	Lon	7.4	rugin	Lon	7.4	rugin	Lon	7.4	rigin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		4.0			4.0			4,0			4.0	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.55	14	24	0.55	14	24	0.00	14	24	0.99	14
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	Right 2.0	2.0	10.0	Right
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	110,000,000,000	2.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0		0.0	0.0	0.0	0.0
Detector 1 Type		CI+Ex			CI+Ex			0.6	2.0	2.0	0.6	2.0
Detector 1 Channel	CITEX	CITEX	CITEX	CIFEX	CITEX	CITEX	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel	No.					1000						
Detector 2 Extend (s)		0.0			0.0	Same		0.0			0.0	
Turn Type	Prot		Perm	Perm		Perm	pm+pt		Perm	Perm	311	Perm
Protected Phases	5	2			6		7	4			8	
Permitted Phases			2	6	4-110	6	4		4	8	7	8
Detector Phase	5	2	2	6	6	6	7	4	4	8	8	8

	M	1	1	4	1	لر	*	×	1	4	×	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Switch Phase	A AM	TOTAL	THE STATE OF	Sea Interes		i findle		White Wes	200	2.727		
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	8.0	20.0	20.0	20.0	20.0	20.0	8.0	20.0	20.0	20.0	20.0	20.0
Total Split (s)	18.0	49.0	49.0	31.0	31.0	31.0	8.0	31.0	31.0	23.0	23.0	23.0
Total Split (%)	22.5%	61.3%	61.3%	38.8%	38.8%	38.8%	10.0%	38.8%	38.8%	28.8%	28.8%	28.8%
Maximum Green (s)	14.0	45.0	45.0	27.0	27.0	27.0	4.0	27.0	27.0	19.0	19.0	19.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	- 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lag			Lead	Lead	Lead	Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes			Yes	Yes	Yes	Yes			Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0.	3.0
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max	C-Max
Walk Time (s)		5.0	5.0	5.0	5.0	5.0	(West State	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	43	0	0.	0	0	0	17. C.	0.		0	. 0	0
Act Effct Green (s)	14.0	45.0	45.0	27.0	27.0	27.0	27.0	27.0	27.0	19.0	19.0	19.0
Actuated g/C Ratio · "	0.18	0.56	0.56	0.34	0.34	0.34	0.34	0.34	0.34	0.24	0.24	0.24
v/c Ratio	0.91	0.11	0.31	0.25	0.94	0.62	0.50	0.20	0.24	0.40	0.69	0.76
Control Delay	44.0	8.3	2.4	20.3	42.1	14.7	23.2	20.0	4.5	30.4	37.3	10.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	44.0	8.3	2,4	- 20.3	42.1	14.7	23.2	20.0	4.5	30.4	37.3	10.0
LOS	D	A	Α	C	D	В	C	В	A	C	D	A
Approach Delay		24.6	10.00		33.0			16.6		14	20.1	
Approach LOS		C			C			В			C	

Intersection Summary
Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 8 (10%), Referenced to phase 4:NETL and 8:SWTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94 Intersection Signal Delay: 25.9 Intersection Capacity Utilization 77.4%

Intersection LOS: C

Analysis Period (min) 15

STATE VIEW PROSPECTOR

	٠	→	7	1	←	1	1	1	1	1	1	4
Lane Group	EBL.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ment ent	ተተ	14	ካካ	ተተ					ሻሻ		7
Volume (vph)	0		475	713	333	0	0	0	0	333	0	96
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		100.0	75.0	0.52.4	0.0	0.0		0.0	100.0	SES-N	100.0
Storage Lanes	0		1	2		0	0		0	1		1
Taper Length (m)	7.5		7.5	7.5		7.5	7.5		7.5	7.5		7.5
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt 4000000000000000000000000000000000000		1000	0.850					1100	odin			0.850
Flt Protected			30300	0.950						0.950		I I NATURATED
Satd. Flow (prot)	0	3579	1601	3471	3579	0	0	0	0	3471	0	1601
Flt Permitted	100	-	00 4555	0.950		870	000 000	10.75		0.950	A	,,,,,
Satd. Flow (perm)	0	3579	1601	3471	3579	0	0	0	0	3471	. 0	1601
Right Turn on Red	_	4.4000	Yes		271.7	Yes	7	350	Yes	10000	0.53	Yes
Satd. Flow (RTOR)			516		S113112	voil di			4000			104
Link Speed (k/h)		50			50			50			50	0.583
Link Distance (m)		102.0			179.6			199.6			198.0	
Travel Time (s)		7.3			12.9			14.4			14.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	311	516	775	362	0	0.02	0	0.02	362	0.02	104
Shared Lane Traffic (%)	1000	0	No.	KU YEU		ACTIVE.	. Lucid	I STA	at mu As	002		104
Lane Group Flow (vph)	0	311	516	775	362	0	0	0	0	362	0	104
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	COR	7.4	ragin	Lon	7.4	rsigint	Lon	7.4	rugin	Lon	7.4	ragin
Link Offset(m)		0.0		9	0.0			0.0			0.0	
Crosswalk Width(m)		4.8	68800		4.8			4.8			4.8	
Two way Left Turn Lane		4.0			4.0		116	4.0			4.0	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.00	25	24	0.55	14	24	0.00	14	24	0.03	25
Number of Detectors	35.71	2	2	2	2	14	24		14	2	shies	23
Detector Template			4	4	-					-		4
Leading Detector (m)	Why !	15.2	15.2	15.2	15.2					15.2		15.2
Trailing Detector (m)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Position(m)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Size(m)		1.8	1.8	1.8	1.8					1.8	Mr. P.A.	1.8
Detector 1 Type		CI+Ex		CI+Ex	CI+Ex					CI+Ex		CI+Ex
Detector 1 Channel		CITEX	CITEX	CITEX	CITEX					CITEX		CITEX
Detector 1 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Queue (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Delay (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 2 Position(m)		13.4	13.4	13.4	13.4					13.4		13.4
Detector 2 Size(m)		1.8	1.8	1.8	1.8					1.8		1.8
Detector 2 Type		CI+Ex	CI+Ex	CI+Ex								
		CITEX	CITEX	CITEX	CI+Ex					CI+Ex		CI+Ex
Detector 2 Channel		0.0	0.0	0.0	0.0					0.0		00
Detector 2 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Turn Type			Perm	Prot						custom		custom
Protected Phases		2		1	6							1.4
Permitted Phases			2	Navi						8		4
Detector Phase		2	2		6					8		4

	•	-	*	1	-	4	1	1	~	1	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	11			11	7	ሻሻ		7			
Volume (vph)	96	523	0	0	856	190	190	0	332	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	70.0		0.0	0,0		100.0	100.0	855 KAR	100.0	0.0		0.0
Storage Lanes	1	- The state of the	0	0	TIM INC. O. C.	1	1		1	0		0
Taper Length (m)	7.5	530000	7.5	7,5		7.5	7.5		7.5	7.5		7.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt	1.24/15				1000	0.850	West State		0.850	Para Na		A CONTRACTOR
Flt Protected	0.950	41112.34-002	C. Lincoln Const. N		THE PERSON IN	and the second	0.950			ALLES TO DOGS		
Satd. Flow (prot)	1789	3579	0	0	3579	1601	3471	0	1601	0	0	0
Flt Permitted	0.219		Section of the second	STANCE IN THE	CONTRACTOR	Transport of the second	0.950	178		Particular Control	The state of the state of	
Satd. Flow (perm)	412	3579	0	0	3579	1601	3471	0	1601	0	0	0
Right Turn on Red	0 1 0 1 10 0 0 0 TE	The second second	Yes	9-61-00 F-6	C. Steel	Yes	1 1500000000000000000000000000000000000	INCOME AS IN	Yes	11123714200	COMME	Yes
Satd. Flow (RTOR)				No.	No.	207			205	1640F380		MATE SE
Link Speed (k/h)	ANN SAMESTIANO.	50	50+201019-512	SOBAN CHEST	50		(CASASILAN)	50	15430/5/15/15	Stehns Shad Li	50	Non-Yell Pri
Link Distance (m)	\$150,000,50	179.6		SS SHIPE	354.8	SHARM	19885-0119	201.6	NAME OF THE OWNER, OWNE	SECTION.	199.0	
Travel Time (s)	SOUTHERNOOS	12.9	MH RESPON	CONSIDER	25.5	era kasa	Haracero Militar	14.5	SHTMSHOOCH		14.3	H1902/8/D08400
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	104	568	0.02	0	930	207	207	0	361	0	0	0
Shared Lane Traffic (%)		ASSENTATION CONTRACTOR	and the second	andronias.	stille freshive	WEION		NE ENTERED	BANKER DENK	MESSES DE	Sent Colden	159305 EU
Lane Group Flow (vph)	104	568	0	0	930	207	207	0	361	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	- Lon	7.4	establish	LOIL	7.4	Lines	A SHEAR	7.4	Tright	VEL DUTKE	7.4	
Link Offset(m)	SAUKE SHATTING	0.0	NESSERVICO	SEMEST COMME	0.0	A TOWNS TOWN	27.02/07/07/09/00	0.0	ENGINEERIN.		0.0	BHIDT-COTAL
Crosswalk Width(m)	53.0H JIM 825	4.8	establish Gray	SERVICENCE	4.8	1903840	TESANOS	4.8	10000000	uxidussa	4.8	333843
Two way Left Turn Lane	10016-0116-000		SHEWBERKE	SENDO DE ELE	7.0	1988/970 mil	855/4/1/2016		PMUESSIISSE	2022/02/2019	1100020777	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.55	14	24	0.33	25	24	0.33	25	24	0.55	14
Number of Detectors	2	2	0/12/12/23/16	SECONDARY	2	2	2	Description of the last of the	2	BRIGHTSANS		Service of
Detector Template	ca solva 4s	4	307 1769 179		out out	FIRST A	ALCHARITY WAY		\$8000 5 .49			25 TV (344)
	15.2	15.2	A STATE OF THE PARTY OF THE PAR	95.00 (CAVO)	15.2	15.2	15.2	to average	15.2	A DESCRIPTION	Wildings 7	Value (Fred
Leading Detector (m)	0.0	0.0			0.0	0.0	0.0	455 MINE	0.0	ASSESSMENT OF STREET	7/69/2014	61122111
Trailing Detector (m)			CALLES WES	Assistantes.		0.0	0.0		0.0		March Selection	ERECUES A
Detector 1 Position(m)	0.0	0.0		8235959	0.0	H-84-1531002-90				1000	DAMES OF	
Detector 1 Size(m)	1.8	1.8	NAMES OFF	250/2550W	1.8	1.8	1.8	18940 PS43	1.8	Reviews this	WANTED VIEW	A SERVICE SE
Detector 1 Type	CI+Ex	CI+Ex		N. S.	CI+Ex	CI+Ex	CI+Ex	HINNERS	CI+Ex		(METALON)	HISSE!
Detector 1 Channel		00	PARTICIPANT OF THE PARTY OF THE	ACCRECATION OF		00		any were see	00	SETENATED IN	000928ams10	DESCRIPTION OF
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0		0.0		THE PARTY	SHIKE
Detector 1 Queue (s)	0.0	0.0	50002W38879	ADCHAGE	0.0	0.0	0.0	CANCELLISE	0.0	SANS AVIII	armed delay	annac.
Detector 1 Delay (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 2 Position(m)	13.4	13.4	50-56L 0-360	59201542200	13.4	13.4	13.4		13.4			330020-
Detector 2 Size(m)	1.8	1.8			1.8	1.8	1.8		1.8	4551186		
Detector 2 Type	CI+Ex	CI+Ex	V-EOVERNMENT	SAL COMMON TOWN	CI+Ex	CI+Ex	CI+Ex		CI+Ex		AMERICAN IN	CONTRACTOR OF THE PARTY OF THE
Detector 2 Channel		表表带等				Tables Vi			1000			
Detector 2 Extend (s)	0.0	0.0	MANUTAN TO	MANUAL TWO	0.0	0.0	0.0		0.0	and the same	A Colonia Constitution	
Turn Type	Perm		HUE.			Perm	custom		custom			
Protected Phases	E DOLLETTING ON	2	da Tible Wilson		6		Series Texas			MOUNT OF THE REAL PROPERTY.		
Permitted Phases	2					6	4		8			SERVICE.
Detector Phase	2	2			6	6	4		8			

	1	-	7	1	+	*	1	1	-	>	ļ	1
Lane Group	EBU	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Switch Phase												
Minimum Initial (s)	4.0	4.0			4.0	4.0	4.0		4.0			
Minimum Split (s)	21.0	21.0			21.0	21.0	21.0		21.0		HESSES	
Total Split (s)	24.0	24.0	0.0	0.0	24.0	24.0	21.0	0.0	21.0	0.0	0.0	0.0
Total Split (%)	53.3%	53.3%	0.0%	0.0%	53.3%	53.3%	46.7%	0.0%	46.7%	0.0%	0.0%	0.0%
Maximum Green (s)	19.0	19.0		D. COLORODA	19.0	19.0	16.0		16.0		C14-14-02-30130-0	
Yellow Time (s)	4.0	4.0			4.0	4.0	4.0		4.0	The state of		11000
All-Red Time (s)	1.0	1.0			1.0	1.0	1.0		1.0			
Lost Time Adjust (s)	-1.0	-1.0	0.0	0.0	-1.0	-1.0	-1.0	0.0	-1.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag		STATE OF					SHOWING.					
Lead-Lag Optimize?					V2-1114-0134				ALL SOURCE STATE			
Vehicle Extension (s)	3.0	3.0		ALCHES!	3.0	3.0	3.0		3.0	3500000		
Recall Mode	None	None	*1000000		None	None	C-Max		C-Max			
Walk Time (s)	5.0	5.0		Shanes	5.0	5.0	5.0	ASTALL S	5.0	SAVES USE	(MASSES)	
Flash Dont Walk (s)	11.0	11.0		* 2000	11.0	11.0	11.0		11.0	7,947,544,91011		
Pedestrian Calls (#/hr)	0	. 0	22000	SEALING!	0	0	0	用制数	0			Serve.
Act Effct Green (s)	18.3	18.3			18.3	18.3	18.7		18.7			
Actuated g/C Ratio	0.41	0.41	NAME OF STREET	SERVE S	0.41	0.41	0.42	Wiles (3)	0.42	17.00	SHUMB!	Same.
v/c Ratio	0.62	0.39	6.1111430		0.64	0.27	0.14		0.46		0079.55-0018	
Control Delay	30.8	10.0	Hobbie 15	(KY555)	15.3	6.1	9.3	71/10/20	6.9	STEEL STEEL	National S	27/11/2
Queue Delay	0.0	0.0	**************************************	51110105-51100	0.0	0.0	0.0	7.000.000.000	0.0	erarnoresonores		4-010-200
Total Delay	30.8	10.0		484975	15.3	6.1	9.3	1 (2 E)	6.9		FEATURE !	US 77
LOS	C	Α	275 O.E.S. SOC. 99		В	Α	Α		Α	11112-012-012-01	ALL STATE OF THE	
Approach Delay		13.2		NICAS P	13.6	Hamilton,		Assistant A	orally (IS)		WASHE.	
Approach LOS	THE RESERVE OF THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO THE PERSON NAMED IN C	В	THE PERSON NAMED IN		В	1000000	10070110					
Queue Length 50th (m)	5.7	14.5	F PARTY	485000	35.1	3.7	5.1		7.9	PEUNET	ENSPERSE	Market I
Queue Length 95th (m)	#23.8	22.7			49.3	m14.4	10.1		23.0	04596364450, VIIII	100000000000000000000000000000000000000	
Internal Link Dist (m)		155.6	WEST, SE	ALMES.	330.8		SECTION CO.	177.6	285000		175.0	
Turn Bay Length (m)	70.0	HONOR POT SHEET, SHE	H104-100193005	ACMINICAL SEL	10.000000000000000000000000000000000000	100.0	100.0	SOURCE SERVICE	100.0	Same allested works	HOST CHANGE THE ST	CONTRACTO
Base Capacity (vph)	183	1591	Name (so hooli	1591	827	1444	STATES	786	1505000	1000000	VSVVIA:
Starvation Cap Reductn	0	0		ATTION OF	0	0	0		0		4110-750-0	
Spillback Cap Reductn	0	0	S. Commission	16 E. M	0	0	0		0			SKI AVE
Storage Cap Reductn	0	0	A REPORT OF	CC B HEAVE	0	0	0	TA - STANDARDEN	0	en en en en en en en en	MARKATON A	SATANA
Reduced v/c Ratio	0.57	0.36	NE 3	1000	0.58	0.25	0.14		0.46	S/6 279	gesternet.	WEEV.

Area Type: Other

Cycle Length: 45

Actuated Cycle Length: 45

Offset: 0 (0%), Referenced to phase 4:NBL and 8:NBR, Start of Green

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.64

Intersection Signal Delay: 12.1

Intersection Capacity Utilization 69.3%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: McKenney Ave & EW-N On Ramp

→ ø2	ø4	
24's	21 s	
4 ø6	ø8	
24 s	21.5	- 18

	*	-	7	1	←	1	1	1	1	1	1	1
Lane Group	EBC	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	A CONTRACTOR OF THE	474	STANDARD TO		44			ર્લ	74		4	74
Volume (vph)	43		20	22	743	47	96	16		231	25	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00		1.00		1.00
Frt		0.996			0.991				0.850	11/100	2000	0.850
Flt Protected	4	0.997			0.999			0.959	1.053		0.957	11.21
Satd. Flow (prot)	0	3554	0	0	3543	0	0	1806	1601	0	1802	1601
Fit Permitted		0.870			0.914		1	0.609	, , , ,		0.663	
Satd. Flow (perm)	0		0	0	3241	0	0	1147	1601	0	1249	1601
Right Turn on Red		2 22.24	Yes			Yes		7 1.00	Yes	- 3		Yes
Satd. Flow (RTOR)		6	1.7.0		16	1.00			61			74
Link Speed (k/h)	11 2	50			50			50			50	1.5
Link Distance (m)		354.8			162.1			123.0			137.4	
Travel Time (s)		25.5			11.7			8.9			.9.9	
Peak Hour Factor	0.92		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	47	861	22	24	. 808	.51	104		116	251	27	225
Shared Lane Traffic (%)		001		24	. 000	.51	104		110	201	21	223
Lane Group Flow (vph)	. 0	930	0	0	883	0	0	121	116	0	278	225
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No		
Lane Alignment	Left										No	No
Median Width(m)	Len	0.0	Right	Left	Left	Right	Left	Left	Right	Left	· Left	Right
Link Offset(m)		ACTION 10	9.		0.0			0.0			0.0	
		0.0			0.0			0.0			0.0	
Crosswalk Width(m)	95.	4.8	-33		4.8			4.8			4.8	
Two way Left Turn Lane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24	6	14	24		14	24	547	14
Turn Type	Perm			Perm			Perm		Perm	Perm		Perm
Protected Phases	-	4	4		8		1111	2			6	
Permitted Phases	4	010	0	8	04.0		2		2	6		6
Minimum Split (s)	21.0	21.0		21.0	21.0		21.0	21.0	21.0	21.0	21.0	21.0
Total Split (s)	23.0	23.0	0.0	23.0	23.0	0.0	22.0	22.0	22.0	22.0	22.0	22.0
Total Split (%)	51.1%	51.1%	0.0%	51:1%	51.1%	0.0%	48.9%	48.9%	48.9%	48.9%	48.9%	48.9%
Maximum Green (s)	18.0	18.0		18.0	18.0		17.0	17.0	17.0	17.0	17.0	17.0
Yellow Time (s)	4.0		2. +	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	1			30 E	* 1111	20/4						- 1
Lead-Lag Optimize?	100	0.00										
Walk Time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	. 0		0	0		0	0	0	0	0	0
Act Effct Green (s)		18.0			18.0			17.0	17.0		17.0	17.0
Actuated g/C Ratio		0.40			0.40			0.38	0.38		0.38	0.38
v/c Ratio		0.75			0.68			0.28	0.18		0.59	0.35
Control Delay		16.4			14.1			12.0	6.2		17.4	8.6
Queue Delay		0.0			0.0			0.0	0.0		0.0	0.0
Total Delay		16.4			14.1			12.0	6.2		17.4	8.6
LOS		В			В			В	A		В	Α

	-	>	•	•	-	1	1	-	-	*	*
Lana Group	EBL	EBT	EBR W	BL WET	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		16.4	THE PARTY OF THE P	14.1	- Pormaria	# 25000W t	9.1		27.0888	13.5	200000000000000000000000000000000000000
Approach LOS		В		В			Α			В	

Intersection Summary Area Type:

Other

Cycle Length: 45

Actuated Cycle Length: 45

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 45 Control Type: Pretimed Maximum v/c Ratio: 0.75

Intersection Signal Delay: 14.3 Intersection Capacity Utilization 79.7% Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 11: McKenney Ave &

	-	-	7	1	←	4	1	1	-	-	1	1
Lane Group	, EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	-/2/1/201-0	ተ ተ	7	ሻሻ	ተተ	Trails			DE LES VANIET	ሻሻ	5000ma 311	7
Volume (vph)	0	250	200	350	700	0	0	0	0	200	0	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		100.0	75.0		0.0	0.0		0.0	100.0		100.0
Storage Lanes	0		1	2		0	0		0	1		1
Taper Length (m)	7.5	100	7.5	7.5	130	7.5	7.5		7.5	7.5		7.5
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt			0.850	10.56	1115				11111	3, 4, 101		0.850
Fit Protected			X1890C1	0.950						0.950		
Satd. Flow (prot)	0	3579	1601	3471	3579	0	0	0	0	3471	0	1601
Flt Permitted	1111(50	7.70.7	150050	0.950	2000	4.7	-7	1.070		0.950	100	
Satd. Flow (perm)	0	3579	1601	3471	3579	0	0	0	0	3471	0	1601
Right Turn on Red		P. C. S. S. S. S. S.	Yes	0.4962149	Section.	Yes			Yes	0.00000000		Yes
Satd. Flow (RTOR)			217			1827			100			109
Link Speed (k/h)		50	7.55		50			50			50	200
Link Distance (m)		102.0			179.6			199.6			198.0	
Travel Time (s)		7.3			12.9			14.4			14.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	272	217	380	761	0	0	0	0.02	217	0	109
Shared Lane Traffic (%)	1550	-	337				March 1	Jevis		100		100
Lane Group Flow (vph)	0	272	217	380	761	0	0	0	0	217	0	109
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	7.4	, ugin		7.4	. agin		7.4	rugin	LOIL	7.4	rugin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)	107-24	4.8			4.8	1.34		4.8			4.8	
Two way Left Turn Lane		1,0			1.0			1.0			110	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.00	25	24	0.00	14	24	0.00	14	24	0.00	25
Number of Detectors	O DAY	2	2	2	2		0.000		11000	2		2
Detector Template			11 70									~
Leading Detector (m)	0.00	15.2	15.2	15.2	15.2					15.2		15.2
Trailing Detector (m)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Position(m)	23 139 1	0.0	0.0	0.0	0.0	PD 900		Charles .		0.0	24400	0.0
Detector 1 Size(m)	. 4	1.8	1.8	1.8	1.8					1.8		1.8
Detector 1 Type		CI+Ex		CI+Ex						CI+Ex		CI+Ex
Detector 1 Channel		OILLA	OI. LA	OI.LA	Oliver					01.64		OILLA
Detector 1 Extend (s)	allimit	0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Queue (s)	-	0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Delay (s)	9.	0.0	0.0	0.0	0.0					0.0		0.0
Detector 2 Position(m)		13.4	13.4	13.4	13.4					13.4		13.4
Detector 2 Size(m)		1.8	1.8	1.8	1.8					1.8		1.8
Detector 2 Type		CI+Ex	CI+Ex	CI+Ex	CI+Ex					CI+Ex		CI+Ex
Detector 2 Channel		OI.LA	OI-LA	VI-LA	Oliver					01-24		OILLA
Detector 2 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Turn Type		0.0	Free	Prot						custom		Free
Protected Phases	-	2	1100	1	6					Justolli		1100
Permitted Phases		-	Free	S. 7.	0					8		Free
Detector Phase		2	1.100	1	6					8		1100

03/03/2008

	•	-	*	1	-	•	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase	1		199		HI TO STORY	1					V.D 11 74 4 A	Contract of the second
Minimum Initial (s)		4.0		4.0	4.0					4.0		
Minimum Split (s)		21.0		9.0	21.0	ESS.				21.0		
Total Split (s)	0.0	21.0	0.0	13.0	34.0	0.0	0.0	0.0	0.0	21.0	0.0	0.0
Total Split (%)	0.0%	38.2%	0.0%	23.6%	61.8%	0.0%	0.0%	0.0%	0.0%	38.2%	0.0%	0.0%
Maximum Green (s)		16.0		8.0	29.0		1000			16.0		
Yellow Time (s)		4.0		4.0	4.0					4.0		
All-Red Time (s)		1.0		1.0	1.0					1.0		
Lost Time Adjust (s)	0.0	-1.0	0.0	-1.0	-1.0	0.0	0.0	0.0	0.0	-1.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?		Yes		Yes								
Vehicle Extension (s)		3.0		3.0	3.0					3.0		
Recall Mode		None		None	None					C-Max		
Walk Time (s)		5.0		1,1900,000	5.0					5.0		
Flash Dont Walk (s)		11.0			11.0					11.0		
Pedestrian Calls (#/hr)		0			0					0		
Act Effct Green (s)		10.4	55.0	11.7	26.2					20.8		55.0
Actuated g/C Ratio		0.19	1.00	0.21	0.48					0.38		1.00
v/c Ratio		0.40	0.14	0.51	0.45					0.17		0.07
Control Delay		20.9	0.2	9.7	10.3					12.9		0.1
Queue Delay		0.0	0.0	0.0	0.0					0.0		0.0
Total Delay		20.9	0.2	9.7	10.3					12.9		0.1
LOS		C	Α	Α	В					В		A
Approach Delay		11.7			10.1					. 516		
Approach LOS		В			В							

Intersection Summary
Area Type: Other

Cycle Length: 55

Actuated Cycle Length: 55

Offset: 54 (98%), Referenced to phase 4: and 8:SBL, Start of Green

Natural Cycle: 55

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.51 Intersection Signal Delay: 10.3 Intersection Capacity Utilization 45.0%

Intersection LOS: B
ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: McKenney Ave & N-EW Off Ramp

	1	-	*	1	-	*	1	1	1	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^		Tic Ori	11	7	ሻሻ		7			
Volume (vph)	100	350	0	0	550	350	500	0	750	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	70.0		0.0	0.0	Section 1	100.0	100.0		100.0	0.0		0.0
Storage Lanes	1		0	0		1	1		1	0		0
Taper Length (m)	7.5		7.5	7.5	83.00	7.5	7.5		7.5	7.5		7.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt	BANK SH	REELE		i William		0,850			0.850	新華新 佐		
Fit Protected	0.950						0.950					
Satd. Flow (prot)	1789	3579	0	0	3579	1601	3471	0	1601	0	0	0
Flt Permitted	0.320						0.950					
Satd. Flow (perm)	603	3579	0	0	3579	1601	3471	0	1601	0	0	0
Right Turn on Red			Yes		11.17	Yes			Yes			Yes
Satd. Flow (RTOR)		GENERAL		SECTION .	STAR STA	380	NEW PROPERTY.	1000	699			Self-SV
Link Speed (k/h)		50	- ILLEVENINA	no and con-	50	2000	III 2020 SHOULD SHOW	50	10011700	S-10-102102	50	
Link Distance (m)		179.6		WHATE	360.2			201.6	1253	PARENG.	199.0	
Travel Time (s)	340527734405	12.9		A PERSONAL PROPERTY.	25.9			14.5			14.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	109	380	0	0	598	380	543	0	815	0	0	0.02
Shared Lane Traffic (%)	UNITED AND S		Aller Street	38300	PARTIES.	and leg	45000053240	Basa Fe		YMERIE ENGLAND	CURRENCE.	BROLLIN
Lane Group Flow (vph)	109	380	0	0	598	380	543	0	815	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	MANAGER	7.4		ENERGY	7.4	rugin	GS-HSSESS	7.4	1000	Description	7.4	rugin
Link Offset(m)	GINIII GI SH	0.0	SERVICE CONTRACTOR		0.0		22/16/22/14/63	0.0	CHRONOSEN)		0.0	REPARTIE
Crosswalk Width(m)		4.8	S147797484	HEITASSES	4.8	1931W988	STEELING	4.8	0.006/2000/01		4.8	
Two way Left Turn Lane	901200817-556	US HE THE	SW3500MW	THE WATER	7.0			4.0	ELT///weight	02020-0450E00	TO THE CALL	MARKET.
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.55	14	24	0.33	25	24	0.55	25	24	0.55	14
Number of Detectors	2	2	KHESSHERE	24	0.2	23	2	B447/00711	25	laussetter	AND STREET	DAMES C
Detector Template	4		1000 (100 cm)		2	4	4	\$80036ER	100000			NAME OF
Charles Andrew Control of the Contro	450	15.2	SHASSONA		15.0	15.2	15.2	ROSE AND WAY	15.2	DESCRIPTION OF	entosetens	SHOWER
Leading Detector (m)	15.2				15.2	A 100 CO	0.0	PARKET		VIII THE REAL PROPERTY.	Wedt (m)	8800068
Trailing Detector (m)	0.0	0.0	RUTHUS IIIS	III-COURS	0.0	0.0		WASHINGTON WATER	0.0	3530,610,000	MATERIAL PROPERTY.	SSSMarke
Detector 1 Position(m)	0.0	0.0		5 50 GW	0.0	0.0	0.0	N. G. III.	0.0		2 V	37300
Detector 1 Size(m)	1.8	1.8	ALTERNA SOCIALIST	SHANNA	1.8	1.8	1.8	XICHEO LA	1.8	VIETNO CHESTIANI		
Detector 1 Type	CI+Ex	CI+Ex	200		CI+Ex	CI+Ex	CI+Ex		CI+Ex			88,000
Detector 1 Channel			A CHARLES OF STATE				MARKET AND THE RESERVE	named and the				
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0	特別別所	0.0	Market N		
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0		0.0			CO-CHUITTER:
Detector 1 Delay (s)	0,0	0.0		See See	0.0	0.0	0.0	15)158	0,0			1
Detector 2 Position(m)	13.4	13.4			13.4	13.4	13.4		13.4			
Detector 2 Size(m)	1.8	1.8			1.8	1.8	1.8		1.8			
Detector 2 Type	CI+Ex	CI+Ex			CI+Ex	CI+Ex	CI+Ex		CI+Ex			
Detector 2 Channel	1000				**************************************				SPERM			
Detector 2 Extend (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Turn Type	Perm				1	Free	custom		Free	MSS18		Same
Protected Phases		2			6							
Permitted Phases	2	* William	PHE TANK	第三次	Selling.	Free	4		Free		Y Euch	
Detector Phase	2	2			6		4					

	•	-	*	1	←	*	1	1	-	1	1	1
Lane Group	EBL	EBT.	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0			4.0		4.0					104-000-0-00
Minimum Split (s)	21.0	21.0	A STATE OF	2000	21.0		21.0	28X.38		94.00012		
Total Split (s)	30.0	30.0	0.0	0.0	30.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0
Total Split (%)	54.5%	54.5%	0.0%	0.0%	54.5%	0.0%	45.5%	0.0%	0.0%	0.0%	0.0%	0.0%
Maximum Green (s)	25.0	25.0	25.549.500.06.9.	SON SHOULD BE	25.0	NO MACHINE CONT.	20.0	MANAGER TRANSPORT		art forestern	CSGS77424241	511005 4765
Yellow Time (s)	4.0	4.0	EHW?	LESS II	4.0	WEAR TO	4.0		31 m	153800	EELVIN	Marin .
All-Red Time (s)	1.0	1.0		Ce-8 Sed HOVE	1.0		1.0		I CA ACPAINING	11 5 23 10 4 6 70 4 2 9		
Lost Time Adjust (s)	-1.0	-1.0	0.0	0.0	-1.0	0.0	-1.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	News Will	(1257)	HARAIN	No.		TO THE O	2020036		(SHA)	ancielle.		
Lead-Lag Optimize?		1444 DEVENTED						HISCHARD TO THE				
Vehicle Extension (s)	3.0	3.0	MEAN REAL	ALPEN DE	3.0		3.0	SHOUTH BUILDING			1499(R))(1	SAVE
Recall Mode	None	None	TOGETHER WITH		None	************	C-Max					
Walk Time (s)	5.0	5.0	14 3 5 5	RESERVE	5.0	DEWON!	5.0		NAME OF THE PARTY OF	riinusiine	CORPOR	Districe.
Flash Dont Walk (s)	11.0	11.0	CONTRACTOR		11.0		11.0		9475/24E 1177			ATTOCKS AT
Pedestrian Calls (#/hr)	0	. 0	DESKER!	140	0	357,650,6	0		SUBVENI DE			1004
Act Effct Green (s)	16.6	16.6		3500,478	16.6	55.0	30.4	(T-10,000))	55.0			
Actuated g/C Ratio	0.30	0.30	WINDS TO SE	The Water	0.30	1.00	0.55	SESTION.	1.00	GETTING	052 BV81	
v/c Ratio	0.60	0.35		£411110	0.55	0.24	0.28	HESS PEACE	0.51			
Control Delay	25.2	8.8	POSICOSIO		17.5	0.3	7.9	9214 (GAS)	1.2	- SANS	SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PER	SHAME IN
Queue Delay	0.0	0.0	11948-80999	2440000000	0.0	0.0	0.0	WOOS/A144200W	0.0			HACO.
Total Delay	25.2	8.8	SSEA	THE ST	17.5	0.3	7.9	25.000	1.2		anteni	
LOS	С	Α		WELLS NO. 1979	В	Α	Α	THE PERSON	Α	100000000000000000000000000000000000000		
Approach Delay	BESTON	12.5			10.9	EN INS		WYS DATE	and the	2 C 1 C 1	SILVAN, L	MERK
Approach LOS		В			В	CHINOCES.	STEPS WINDS	MARTING COST	WHI W. STEWN		23/63/19	
Queue Length 50th (m)	2.9	11.9	##WWW.AN		26.6	0.0	12.3	(Fig. 1859/F)	0.0	SELVACE.	ENGINES.	ELSH:
Queue Length 95th (m)	18.4	17.9	STEPHEN P	100000000000000000000000000000000000000	31.1	0.0	26.9	2011/27/2019	0.0			
Internal Link Dist (m)	organism.	155.6	Eurobia	CONTRACTORS	336.2	a de la composición dela composición de la composición dela composición de la compos	destablish	177.6	ON PARK		175.0	SAVAL
Turn Bay Length (m)	70.0	PRINCE DE LA CONTRACTION DEL CONTRACTION DE LA C	100-100-00	130-11-204	B-F-RIGHTS-V	100.0	100.0	ANCOUNTER	100.0		0.04-6463	
Base Capacity (vph)	285	1692	3.80	The State	1692	1601	1921	50×10×600	1601	ELEXUE IV	BUX ON	
Starvation Cap Reductn	0	0	2057/19000029		0	0	0	114-10090	0	THE PARTY OF		
Spillback Cap Reductn	0	0	W.Sarah	DOM: NO	0	0	0	E AGO	0		a Program	C ESTAN
Storage Cap Reductn	0	0		NOTHER P	0	0	0	100	0	571175000000	F354574 N/5[1]	2642046
Reduced v/c Ratio	0.38	0.22		4,022,000	0.35	0.24	0.28		0.51	Marketta.	SER AND	X 388

Area Type: Other

Cycle Length: 55

Actuated Cycle Length: 55

Offset: 0 (0%), Referenced to phase 4:NBL and 8:, Start of Green, Master Intersection

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60
Intersection Signal Delay: 7.8
Intersection Capacity Utilization 45.0%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 2: McKenney Ave & EW-N On Ramp	<u> </u>
→ ø2	ø4
30 s	25 s
← _{Ø6}	
30 \$	

	•	-	7	1	←	1	1	1	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NER	SBL	SBT	SBR
Lane Configurations		474			474			4	7	*	The state of the state of	
Volume (vph)	168	855	77	86	780	187	38			92	18	82
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0,0	0.0		0.0	0.0	-	60.0	60.0		0.0
Storage Lanes	0		0	0		0	0		1	1		0
Taper Length (m)	7.5	-1.18	7.5	7.5		7.5	7.5		7.5	7.5	10 274	7.5
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.989	1750		0.973				0.850		0.878	1
FIt Protected		0.992			0.996			0.970		0.950		
Satd. Flow (prot) .	0	3511	. 0	0	3468	0	0	1827	1601	1789	1654	0
FIt Permitted		0.572			0.721			0.788		0.714	3000	
Satd. Flow (perm)	0	2024	0	0	2510	0	0	1484	1601	1345	1654	0
Right Turn on Red			Yes		10000	Yes			Yes	151366	1 11000	Yes
Satd. Flow (RTOR)	545	21			.70		1.3		47		89	1.05
Link Speed (k/h)		50			50			50	9,750		50	
Link Distance (m)		360.2			130.6			127.4			151.0	
Travel Time (s)		25.9			9.4			9.2			10.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	183	929	84	93	848	203	41	25	47	100	20	89
Shared Lane Traffic (%)			100	-	-			100	-08		3	00
Lane Group Flow (vph)	0	1196	0	0	1144	0	0	66	47	100	109	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0	7.1.3.1.1	a sit	3.7	g.	Lon	3.7	rugin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8	- 400		4.8	
Two way Left Turn Lane		***			1.0			4.0			4.0	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.00	14	24	0,00	14	24	0.00	14	24	0.00	14
Turn Type	Perm	**	377	Perm	17		Perm		Perm	Perm		1.7
Protected Phases		4			8			2	1 41111	Cim	6	
Permitted Phases	4	STORY.		8	11-10		2	15.00	2	6	sancija.	
Minimum Split (s)	21.0	21.0		21.0	21.0		21.0	21.0	21.0	21.0	21.0	
Total Split (s)	49.0	49.0	0.0	49.0	49.0	0.0	21.0	21.0	21.0	21.0	21.0	0.0
Total Split (%)	70.0%	70.0%	0.0%	70.0%	70.0%	0.0%	30.0%	30.0%	30.0%	30.0%	30.0%	0.0%
Maximum Green (s)	44.0	44.0	0.070	44.0	44.0	0.070	16.0	16.0	16.0	16.0	16.0	0.076
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	4.0
Lead/Lag	0.0	0.0	4.0	0.0	0.0	4.0	0.0	0.0	5.0	5.0	5.0	4.0
Lead-Lag Optimize?	200			Tanan.				65701			# (250C)	
Walk Time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0	0	0	0	
Act Effct Green (s)		44.0			44.0			16.0	16.0	16.0	16.0	
Actuated g/C Ratio		0.63			0.63			0.23	0.23	0.23	0.23	
v/c Ratio		0.93			0.71			0.19	0.12	0.33	0.24	
Control Delay		27.2			11.3			23.7	8.2	26.1	9.2	

	<i>→</i>	7 1	4-	•	1	Ť	1	1	1	4
Lane Group	EBL EBT	EBR WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0		0.0	_2K(377)y	- B	0.0	0.0	0.0	0.0	716
Total Delay	27.2		11.3			23.7	8.2	26.1	9.2	
LOS	C		В			C	A	C	Α	
Approach Delay	27.2		11.3			17.2			17.3	
Approach LOS	C		В			В			В	

Intersection Summary Area Type:

Other

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70 Control Type: Pretimed Maximum v/c Ratio: 0.93 Intersection Signal Delay: 19.2 Intersection Capacity Utilization 85.3%

Intersection LOS: B ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 17: McKe	nney Ave &
1 22	→ ø4
21.8	49'8
↓ e6	← ø8
21 s	49 s of a New Michael Control of the

Node #9	1	→	+	1	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	Ŋ	ተተ	ተተ	7	ሻሻ	7	
Volume (vph)	570	96	333	475	48	48	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (m)	100.0			0.0	100.0	100.0	
Storage Lanes	1			1	1	1	
Taper Length (m)	7.5			7.5	7.5	7.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frt			2	0.850	3	0.850	
Flt Protected	0.950				0.950		
Satd. Flow (prot)	1789	3579	3579	1601	3471	1601	
Fit Permitted	0.471		2004		0.950		
Satd. Flow (perm)	887	3579	3579	1601	3471	1601	
Right Turn on Red				Yes	Section	Yes	
Satd. Flow (RTOR)				516		52	
Link Speed (k/h)		50	50		40		
Link Distance (m)	1 8495	204.6	302.7		129.5		
Travel Time (s)		14.7	21.8		11.7		15 11
Peak Hour Factor	0.92		0.92	0.92	0.92	0.92	
Adj. Flow (vph)	620	104	362	516	52	52	
Shared Lane Traffic (%)	- 1	100		2.6	i t		
Lane Group Flow (vph)	620	104	362	516	52	52	
Enter Blocked Intersection	No	No	No	· No	No	No	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(m)		3.7	3.7		7.4	2.10	A THE RESIDENCE AND ADDRESS OF THE PARTY OF
Link Offset(m)		0.0	0.0		0.0		
Crosswalk Width(m)		4.8	4.8		4.8		
Two way Left Turn Lane		0.11 (0.000)	1000				
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	WAS TRAINED TO BE AND THE REAL PROPERTY.
Turning Speed (k/h)	24	3.55		40	24	14	
Number of Detectors	- 2	2	. 2	2	2	2	Strate and a second second
Detector Template	1776	0.7%	7 73	1977	(5)	100	
Leading Detector (m)	15.2	15.2	15.2	15.2	15.2	15.2	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	. 0.0		0.0	0.0	All the second s
Detector 1 Size(m)	1.8	1.8	1.8	1.8	1.8	1.8	
Detector 1 Type		CI+Ex		CI+Ex			A second
Detector 1 Channel	or an	01.11				01.44	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	4
Detector 2 Position(m)	13.4	13.4	13.4	13.4	13.4	13.4	
Detector 2 Size(m)	1.8	1.8	1.8	1.8	1.8	1.8	to A control of the control of
Detector 2 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 2 Channel		UI-LA	VI LIA	O, Lin	U. LA	Or Lan	
Detector 2 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Turn Type	pm+pt	0.0	0.0	Perm	0.0	Free	
Protected Phases	7	4	8	Com	6	1100	
Permitted Phases	4		U	8	· ·	Free	
Detector Phase	7	4	8	8	6	1100	
Dollotti i Hada			0	0	U		

Switch Phase		the state			THE STREET	-	-0-			-110/100	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0						
Minimum Split (s)	8.0	20.0	20.0	20.0	20.0						
Total Split (s)	32.0	70.0	38.0	38.0	20.0	0.0					
Total Split (%)	35.6%	77.8%	42.2%	42.2%	22.2%	0.0%					
Maximum Green (s)	28.0	66.0	34.0	34.0	16.0						
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5						
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5						
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	. 0.0		P. 1			
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0					
Lead/Lag	Lead		Lag	Lag		- 1920		55	16		
Lead-Lag Optimize?	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		14.				
Recall Mode	None	C-Max	C-Max	C-Max	Max						
Walk Time (s)		5.0	5.0	5.0	5.0				100		
Flash Dont Walk (s)		11.0	11.0	11.0	11.0						
Pedestrian Calls (#/hr)		. 0	0	. 0	0				+)	1.0	
Act Effct Green (s)	66.0	66.0	42.7	42.7	16.0	90.0					
Actuated g/C Ratio	0.73	0.73	0.47	0.47	0.18	1.00			0		
v/c Ratio	0.73	0.04	0.21	0.50	0.08	0.03					
Control Delay	10.7	3.4	16.5	9.0	31.4	0.0					
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0					
Total Delay	10.7	3.4	16.5	9.0	31.4	0.0					
OS	В	Α	В	Α	C	Α					
Approach Delay	1	9.7	12.1	- 77	15.7	1					
Approach LOS		Α	В		В						

Other

Area Type: Cycle Length: 90

Actuated Cycle Length: 90

Offset: 48 (53%), Referenced to phase 4:EBTL and 8:WBT, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.73 Intersection Signal Delay: 11.3

Intersection LOS: B Intersection Capacity Utilization 67.7% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 9: N-EW Ramp &

Node #13	•	-	—	1	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	A VAN DER STATE OF THE STATE OF
Lane Configurations	ሻ	ተተ	ተተ	71	ሻ	7	
Volume (vph)	48	96	523	48	190	285	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (m)	100.0			100.0	0.0	0.0	
Storage Lanes	1			1	1	1	
Taper Length (m)	7.5			7.5	7.5	7.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt				0.850		0.850	
Fit Protected	0.950				0.950		
Satd. Flow (prot)	1789	3579	3579	1601	1789	1601	
Fit Permitted	0.405	100 STORES	17(7)(7)	100000000	0.950	10000	
Satd. Flow (perm)	763	3579	3579	1601	1789	1601	
Right Turn on Red		25.00	1500	Yes	1,00	Yes	
Satd. Flow (RTOR)				52		169	
Link Speed (k/h)		50	50	1,000	40	200	
Link Distance (m)		302.7	299.5		122.1		
Travel Time (s)		21.8	21.6		11.0		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	52	104	568	52	207	310	
Shared Lane Traffic (%)				-			
Lane Group Flow (vph)	52	104	568	52	207	310	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(m)		3.7	3.7	- 3	3.7	, again	
Link Offset(m)		0.0	0.0		0.0		
Crosswalk Width(m)		4.8	4.8		4.8		
Two way Left Turn Lane		1.0			1.0		
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	
Turning Speed (k/h)	24	0.00	0.00	14	24	40	
Number of Detectors	2	2	2	2	2	2	
Detector Template			-		100	*	
Leading Detector (m)	15.2	15.2	15.2	15.2	15.2	15.2	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	1.8	1.8	1.8	1.8	1.8	1.8	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		
Detector 1 Channel	OILLA	OITEX	CITLA	CITEX	CITEX	CITEX	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	13.4	13.4	13.4	13.4	13.4	13.4	
Detector 2 Size(m)	1.8	1.8	1.8	1.8	1.8	1.8	
Detector 2 Type	CI+Ex	CI+Ex	CI+Ex				
Detector 2 Channel	OFFX	OFEX	CITEX	CI+Ex	CI+Ex	CI+Ex	
Detector 2 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0 Porm	0.0	0.0	0.0	0.0	0.0	
Turn Type Protected Phases	Perm			Perm		Perm	
Protected Phases		4	8		6		
Permitted Phases Detector Phase	4			8		6	
Detector Pilase	4	4	8	8	6	6	

1		←	1	1	1
12126198	PRE	STORES.	Wood S	COL	COD

Switch Phase	N-Stranger		Committee .	-			SCHOTS#95	 11977	Section 1	The State of
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0				
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0				
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0			1.50	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%				14
Maximum Green (s)	18.0	18.0	18.0	18.0	19.0	19.0				
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5				
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5				
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0				
Lead/Lag		1								
Lead-Lag Optimize?										
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			1.5	
Recall Mode	C-Max	C-Max	C-Max	C-Max	Max	Max				
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0				
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0				
Pedestrian Calls (#/hr)	0	. 0	0	0	0	0		4		
Act Effct Green (s)	18.0	18.0	18.0	18.0	19.0	19.0				
Actuated g/C Ratio	0.40	0.40	0.40	0.40	0.42	0.42				
//c Ratio	0.17	0.07	0.40	0.08	0.27	0.40				
Control Delay	8.4	- 14.4	10.7	3.6	9.8	6.1				
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0				
Total Delay	8.4	14.4	10.7	3.6	9.8	6.1				5 1
.os	A	В	В	Α	A	Α				
Approach Delay		12.4	10.1		7.5					
Approach LOS		В	В		Α					

Intersection Summary .

Area Type: Other

Cycle Length: 45

Actuated Cycle Length: 45

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBT, Start of Green, Master Intersection

Natural Cycle: 40

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.40 Intersection Signal Delay: 9.3 Intersection Capacity Utilization 38.8%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 13: EW-N Ramp &

Node #6	•	->	7	1	-	•	1	1	1	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ALL DESCRIPTION OF THE PARTY OF	413			414			र्स	1		4	7
Volume (vph)	6	98	182	202	388	6	154	18	171	23	23	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		50.0	50.0		0.0	0.0		50.0	0.0		50.0
Storage Lanes	0		0	0		0	0		1	0		1
Taper Length (m)	7.5		7.5	7.5	170	7.5	7.5		7.5	7.5		7.5
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.905			0.998				0.850			0.850
Fit Protected		0.999			0.983			0.957			0.976	
Satd. Flow (prot)	0	3235	0	0	3511	0	0	1802	1601	0	1838	1601
FIt Permitted		0.940			0.748			0.729			0.862	
Satd. Flow (perm)	0	3044	0	0	2671	0	0	1373	1601	0	1624	1601
Right Turn on Red		10000000	Yes			Yes			Yes			Yes
Sald. Flow (RTOR)		198			3	1			186			32
Link Speed (k/h)		50			50			50	71.90%		50	
Link Distance (m)		299.5			355.8			123.6			83.3	
Travel Time (s)		21.6			25.6			8.9			6.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0,92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	7	107	198	220	422	7	167	20	186	25	25	32
Shared Lane Traffic (%)	100	VOE 02 1		100	127	W. Del	v-15571	THE PA	100	9 15	THE PARTY	1100
Lane Group Flow (vph)	0	312	0	0	649	0	0	187	186	0	50	32
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0		-	0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8		SIDE	4.8			4.8			4.8	
Two way Left Turn Lane		110						,,,,			11.0	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.00	14	24	0.00	14	24	0.00	14	24	0.00	14
Number of Detectors	1	2		1	2	SWC.	1	2	200 14	1	2	- 1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	CITEX	CITEX		CITEX	CITEX		OITEX	OITLA	CITEX	CITCA	CITEX	CITEX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	0.0	9.4		0.0	9.4		0.0	9.4	0.0	0.0	9.4	0.0
Detector 2 Position(m)		0.6		the state of	0.6			0.6			0.6	
Detector 2 Size(m)		CI+Ex			CI+Ex			CI+Ex				
Detector 2 Type		CITEX			CITEX			CITEX			CI+Ex	
Detector 2 Channel	37	0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Deves	0.0		Dever	0.0		Derm	0.0	Derm	Deve	0.0	Descri
Turn Type	Perm			Perm	•		Perm	0	Perm	Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4	70		8	•		2		2	6		6
Detector Phase	4	4		8	8		2	2	2	6	6	6

	*	-	7	1	←	1	1	1	-	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase				2		W	all de la constant					
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0	20.0	20.0	20.0	20.0
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	50.0%	50.0%	0.0%	50.0%	50.0%	0.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Maximum Green (s)	16.0	16.0		16.0	16.0		16.0	16.0	16.0	16.0	16.0	16.0
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag						1163.80	25.0	F3 -1134	- 27	3,10		1.0
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Min	C-Min	C-Min	Min	Min	Min
Walk Time (s)	5.0	5.0		5.0	5.0	21 11	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	, 0	4	0	0		. 0	0	0	0	0	0
Act Effct Green (s)		14.3			14.3			17.7	17.7	8	17.7	17.7
Actuated g/C Ratio		0.36			0.36			0.44	0.44		:0.44	0.44
v/c Ratio		0.26			0.68			0.31	0.23		0.07	0.04
Control Delay		3.9			14.5			10.0	2.7		7.9	3.9
Queue Delay		0.0			0.0			0.0	0.0		0.0	0.0
Total Delay	-	3.9			14.5			10.0	2.7		7.9	3.9
LOS		Α			В			В	A		A	A
Approach Delay	- 1	3.9			14.5			6.4			6.3	
Approach LOS		Α			В			Α			A	

Intersection Summary Area Type:

Cycle Length: 40 Actuated Cycle Length: 40

Offset: 0 (0%), Referenced to phase 2:NBTL; Start of Green

Other

Natural Cycle: 40

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68 Intersection Signal Delay: 9.5 Intersection Capacity Utilization 51.7%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 5: Int

Node#9	•	-	+	1	-	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	15	**	ተተ	74	77	7	
Volume (vph)	300						
Ideal Flow (vphpl)	1900						
Storage Length (m)	100.0		100	0.0			
Storage Lanes	1			1	1	1	
Taper Length (m)	7.5			7.5		7.5	
Lane Util. Factor	1.00		0.95			1.00	
Frt Alexander	63.7%	2000		0.850		0.850	
Flt Protected	0.950				0.950		
Satd. Flow (prot)	1789		3579	1601	3471	1601	
Flt Permitted	0.297				0.950		
Satd. Flow (perm)	559	3579	3579	1601	3471	1601	
Right Turn on Red			00,0	Yes	3	Yes	
Satd. Flow (RTOR)				217		54	
Link Speed (k/h)		50	50	-//	40		
Link Distance (m)		204.6	302.7		129.5		
Travel Time (s)		14.7	21.8		11.7		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	326	109	707	217	54	54	
Shared Lane Traffic (%)	720	100	100	THE STATE OF	01		
Lane Group Flow (vph)	326	109	707	217	54	54	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(m)	Lon	3.7	3.7	rogin	7.4	ragin	
Link Offset(m)		0.0	0.0		0.0		
Crosswalk Width(m)		4.8	4.8		4.8		
Two way Left Turn Lane		4.0	4.0		4.0		
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	
Turning Speed (k/h)	24	0.00	0.00	40	24	14	
Number of Detectors	2	2	2	2	2	2	
Detector Template		-	-	-	4	-	
Leading Detector (m)	15.2	15.2	15.2	15.2	15.2	15.2	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	1.8	1.8	1.8	1.8	1.8	1.8	The second of th
Detector 1 Type	CI+Ex		CI+Ex				
Detector 1 Channel	CITEX	CITCX	CITEX	CITEX	CITEX	CI+Ex	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		
Detector 1 Delay (s)	- 0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	13.4	13.4	13.4	13.4		0.0	
Detector 2 Size(m)	1.8	1.8	1.8		13.4	13.4	
Detector 2 Type	CI+Ex			1.8	1.8	1.8	
Detector 2 Channel	CITEX	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	No.
Detector 2 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	100
	0.0	0.0	0.0	0.0	0.0	0.0	
Turn Type	pm+pt			Perm		Perm	
Protected Phases	- 1	4	8	8	6		
Permitted Phases	4					6	
Detector Phase	7	4	8	8	6	6	

	-	-		~	-	*		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	SOM S	
Switch Phase		-100	-	45.045-07	-	STORE STORE	120	Set of a managed of the best of the
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Minimum Split (s)	8.0	20.0	20.0	20.0	20.0	20.0	# -	
Total Split (s)	34.0	73.0	39.0	39.0	27.0	27.0		
Total Split (%)	34.0%	73.0%	39.0%	39.0%	27.0%	27.0%	n.	
Maximum Green (s)	30.0	69.0	35.0	35.0	23.0	23.0		
Yellow Time (s)	. 3.5	3.5	3.5	3.5	3.5	3.5	-	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5		
Lost Time Adjust (s)	- 0.0	0.0	0.0	0.0	0.0	0.0		200
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lead/Lag	Lead		Lag	Lag	100		14.5	2 2 3
Lead-Lag Optimize?	Yes		Yes	Yes				
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Recall Mode	None	C-Max	C-Max	C-Max	Max	Max		
Walk Time (s)	1	5.0	5.0	5.0	5.0	5.0		The second second at the
Flash Dont Walk (s)		11.0	11.0	11.0	11.0	11.0		
Pedestrian Calls (#/hr)	8 IE. 7	. 0	0	0	0	0.		
Act Effct Green (s)	69.0	69.0	52.0	52.0	23.0	23.0		
Actuated g/C Ratio	0.69	0.69	0.52	0.52	0.23	0.23	100	
v/c Ratio	0.60	0.04	0.38	0.23	0.07	0.13	17.	
Control Delay	10.8	5.0	14.7	4.2	30.5	9.6		ATT THE PARTY OF T
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	10.8	5.0	14.7	4.2	30.5	9.6		A TOTAL OF THE PARTY OF THE PAR
LOS	В	Α	В	Α	C	Α		
Approach Delay		9.3	12.2		20.1			
Approach LOS		Α	В		C			

Area Type: Other

Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 92 (92%), Referenced to phase 4:EBTL and 8:WBT, Start of Green

145

Natural Cycle: 55

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60 Intersection Signal Delay: 11.9 Intersection Capacity Utilization 47.9%

Intersection LOS: B
ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 9: N-EW Ramp &

Node 13	•	->	-	*	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ኝ	ተተ	ተተ	7	ሻ	7	
Volume (vph)	50		250	50		600	
Ideal Flow (vphpl)	1900		1900	1900		1900	
Storage Length (m)	100.0			100.0	0.0	0.0	
Storage Lanes	1			1	1	1	
Taper Length (m)	7.5			7.5	7.5	7.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt Social Control of the Control of				0.850	135	0.850	
Flt Protected	0.950				0.950		
Satd, Flow (prot)	1789	3579	3579	1601	1789	1601	
FIt Permitted	0.584	1000000	3516	110,500	0.950	106300	
Satd. Flow (perm)	1100	3579	3579	1601	1789	1601	
Right Turn on Red		107775	1000	Yes		Yes	
Satd. Flow (RTOR)		0.0		54		363	
Link Speed (k/h)		50	50		40		
Link Distance (m)		302.7	299.5		122.1		
Travel Time (s)		21.8	21.6		11.0		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	54	109	272	54	543	652	
Shared Lane Traffic (%)	04	100	212		040	002	
Lane Group Flow (vph)	54	109	272	54	543	652	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(m)	Cont	3.7	3.7	rogin	3.7	ragin	
Link Offset(m)		0.0	0.0		0.0	1000	
Crosswalk Width(m)	ITAN D	4.8	4.8		4.8		
Two way Left Turn Lane		4.0	4.0	-100	4,0		
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	
Turning Speed (k/h)	24	0.00	0.55	40	24	40	
Number of Detectors	24	2	2	2	2	2	
Detector Template	4	2	2	4	4	4	
Leading Detector (m)	15.2	15.2	15.2	15.2	15.2	15.2	
	0.0	0.0	0.0		0.0	0.0	
Trailing Detector (m) Detector 1 Position(m)				0.0			
	0.0	0.0	0.0	0.0	0.0	0.0	The state of the s
Detector 1 Size(m)	1.8	1.8	1.8	1.8	1.8	1.8	
Detector 1 Type	CITEX	CI+Ex	CITEX	CITEX	CITEX	CI+EX	
Detector 1 Channel	0.0	0.0	0.0	00	0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	13.4	13.4	13.4	13.4	13.4	13.4	
Detector 2 Size(m)	1.8	1.8	1.8	1.8	1.8	1.8	
Detector 2 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 2 Channel	-70					34	
Detector 2 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Turn Type	Perm		-	Perm	1 - 10	Perm	
Protected Phases		4	8		6		
Permitted Phases	4			8		6	
Detector Phase	4	4	8	8	6	6	

	,	-	2000	~	-	*	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Switch Phase		PCW-NS	TOTAL O	e alles		All Cred	NA A CHILL OF LETTER STREET, SELECTION OF STREET, SAN AND STRE
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	
Total Split (s)	20.0	20.0	20.0	20.0	30.0	30.0	
Total Split (%)	40.0%	40.0%	40.0%	40.0%	60.0%	60.0%	
Maximum Green (s)	16.0	16.0	16.0	16.0	26.0	26.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	The second of the second of
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lead/Lag							20
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	STATE OF THE STATE
Recall Mode	C-Max	C-Max	C-Max	C-Max	Max	Max	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	CANDAL AND DESCRIPTION OF THE PARTY.
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0	. 0	0	0	. 0	0	Figure we fire and the second
Act Effct Green (s)	16.0	16.0	16.0	16.0	26.0	26.0	
Actuated g/C Ratio	- 0.32	0.32	0.32	0.32	0.52	0.52	
v/c Ratio	0.15	0.10	0.24	0.10	0.58	0.65	
Control Delay	16.1	9.1	13.2	5.0	11.5	7.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	16.1	9.1	.13.2	5.0	11.5	7.2	
LOS	В	Α	В	Α	В	A	
Approach Delay		11.4	11.8		9.1		THE REAL PROPERTY OF THE PROPE
Approach LOS		В	В		A		

Intersection Summary
Area Type: Other

Cycle Length: 50 Actuated Cycle Length: 50

Offset: 0 (0%), Referenced to phase 4;EBTL and 8;WBT, Start of Green, Master Intersection

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65 Intersection Signal Delay: 9.9 Intersection Capacity Utilization 50.7%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 13: EW-N Ramp &

Node#6	•	-	7	•	4	*	1	1	~	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Name of the last	414	-//		414			4	7	11	લ	7
Volume (vph)	27	422	155	173	86	29	203	26	225	15	- 18	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	. 0.0		50.0	50.0		0.0	0.0		50.0	0.0		50.0
Storage Lanes	0		0	0		0	0		1	0		1
Taper Length (m)	7.5		7.5	7.5.	100	7.5	7.5	2.	7.5	7:5		7.5
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.962			0.985	-			0.850	1.00	1.00	0.850
Flt Protected		0.998			0.971			0.958	0.000		0.978	0.000
Satd. Flow (prot)	0	3436	0	0	3423	0	. 0	1804	1601	0	1842	1601
Flt Permitted		0.930			0.664		V	0.729	1001	U	0.882	1001
Satd. Flow (perm)	0	3202	0	0	2341	- 0	- 0	1373	1601	0	1661	1601
Right Turn on Red	U	JEUL	Yes	V	2541	Yes	0	10/0	Yes	Ų	1001	
Satd. Flow (RTOR)		142	103		32	100					1. 1.	Yes
Link Speed (k/h)		50	11.500		50	100		FO	245		50	14
								50			50	
Link Distance (m)		299.5			355,8	- 5		123.6	No.		83.3	WW
Travel Time (s)	0.00	21.6	0.00	0.00	25.6	0.00	0.00	8.9			6.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	29	459	168	188	93	32	221	28	245	16	20	14
Shared Lane Traffic (%)	1		120	Town is	12122	-10				3.5		
Lane Group Flow (vph)	0	656	0	0	313	0	0	249	245	0	36	14
Enter Blocked Intersection	No	No	No	No.	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	-3.74		0.0	1		0.0	75		0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8	4.5		4.8			4.8	7.0
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0,99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2	5367	1	2	, The	- 1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0	-550	2.0	10.0	2.0		10.0	- 2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	i ke e	0.0	. 0.0	MAG	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	3.0	2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type		CI+Ex	2.		CI+Ex			CI+Ex		CI+Ex		CI+Ex
Detector 1 Channel	OI OIL				O, Lin		O1. LA	W. M.	OI. LA	OI.EX	OI.EX	Oliven
Detector 1, Extend (s)	0.0	0.0		0.0	0.0	Wiles.	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4	0.0	0.0		0.0
Detector 2 Size(m)		0.6			0.6						9.4	
				- 2				0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel								1+1				
Detector 2 Extend (s)	10000	0.0			0.0		- C. S. W.	0.0	40000	D.47 (1015)	0.0	2000000
Turn Type	Perm	8:0		Perm	1741.5		Perm		Perm	Perm	122	Perm
Protected Phases		4			8		100	2			6	
Permitted Phases	4			8			2		2	6	0/1	6
Detector Phase	4	4		8	8		2	2	2	6	6	6

	1	-	*	1	—	*	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase		With the second second					AL VIII		30000000			- ODE
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0		20.0	20.0		20.0	20.0	20.0	20.0	20.0	20.0
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	50.0%	50.0%	0.0%	50.0%	50.0%	0.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Maximum Green (s)	16.0	16.0		16.0	16.0	600000000	16.0	16.0	16.0	16.0	16.0	16.0
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	2016 V								4000	132	1000	535.5
Lead-Lag Optimize?									175			
Vehicle Extension (s)	3.0	3.0		3,0	-3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Min	C-Min	C-Min	Min	Min	Min
Walk Time (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0.	5.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	. 0		0	0		0	0	0	0-	0	0
Act Effct Green (s)		12.2			12.2			19.8	19.8		19.8	19.8
Actuated g/C Ratio	- 15	0.30			. 0.30	Fid	1 07	0.50	0.50		0.50	0.50
v/c Ratio		0.61			0.90df			0.37	0.27		0.04	0.02
Control Delay		11.3		.3//	11.0			9.5	2.4	1.	6.9	4.3
Queue Delay		0.0			0.0			0.0	0.0		0.0	0.0
Total Delay		11.3			11.0	44.616		9.5	2.4	100	6.9	4.3
LOS		В			В			Α	Α		Α	Α
Approach Delay	,	11.3			11.0	12 (2)		6.0			6.2	100
Approach LOS		В			В			Α			Α	

Intersection LOS: A

ICU Level of Service B

Intersection Summary

Area Type:

Cycle Length: 40 Actuated Cycle Length: 40

Offset: 0 (0%), Referenced to phase 2:NBTL, Start of Green

Other

Natural Cycle: 40

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.61

Intersection Signal Delay: 9.3

Intersection Capacity Utilization 56.3%

Analysis Period (min) 15

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 6: Int 20 s

Appendix D Alignment Options Near Villeneuve

Alignment Options Near Villeneuve Road

During the initial stages of this freeway conversion process, the alignment of Ray Gibbon Drive was shifted form the City's proposed intersection to the west to accommodate an interchange. Five alignment alternatives were developed:

- Purple option the highway curves to the east from Giroux Road, then curves west to pass between the Bokenfohr landfill, the well site, and the farmstead. There is minimal impact on the Holden landfill.
- Red option the highway travels directly north from the interchange at Giroux. This alignment does not affect the Bokenfohr landfill or the well site, but removes the farmstead and the Holden landfill.
- Blue option the highway shifts west after the Giroux interchange and bisects the Bokenfohr landfill and does not meet the minimum offset requirements to the well site. The farmstead and the Holden landfill are not affected.
- Orange option the highway shifts to the east from the Giroux interchange then curves east to pass through the farmstead and the Holden landfill. The Bokenfohr landfill and the well site are not affected.
- Green option the highway curves to the east from the Giroux interchange, then curves west to pass between the Bokenfohr landfill, the well site, and the farmstead. There are minimal impacts to the Holden landfill. This is the only option that uses an urban cross-section with a jersey barrier in the median.

These options were evaluated in the matrix shown on the next page. No alignments went further west since that would impact the local road network and Carrot Creek.

The orange alignment was selected as the preferred alignment for the following reasons:

- Accommodates a rural cross-section
- Avoids the Bokenfohr landfill
- Avoids the well site
- Meets minimum power sub station offsets
- Minimizes right-of-way requirements and land remnants.

Ray Gibbon Drive Alignment Options Near Villeneuve Road

	Base Case		Option 1		Option 2		Option 3		Option 4	
Colour Option	Purple		Red		Blue		Orange	П	Green	П
Description	Highway curves to the east, avoiding farmstead oilwell & landfill	o the istead,	Highway straightened through farmstead	ad	Highway curves to the west through landfill	o the	Highway curves to the east through farmstead	o the stead	Highway curves to the east, avoiding farmstead, oilwell & landfill	o the
Geometry							400			
Radii	1000m	2	n/a	-	1500m	3	2000m	2	1500m	m
Center Median Treatment	Depressed	*	Depressed	**	Depressed	77	Depressed	-	Jersey Barrier	2
Access to Compost Site	n/a	-	May need to be relocated east	2	n/a	-	May need to be relocated east	2	n/a	-
Access To Range Road	Relocated to the west	6	n/a	-	Relocated to the west	69	n/a	-	May need to be relocated west	2
Meets AIT standards	yes	1	yes		yes		yes	-	yes	2
Environmental Issues							VIE VIE			
N/S Pipeline Impacts	Pipeline covered by east ramps	2	Pipeline covered by west ramps	2	Pipeline crosses east ramps	-	Pipeline covered by west ramps	9	Pipeline covered by east ramps	co.
E/W Pipline Impacts	Parallel to Villeneuve Road	6	Parallel to Villeneuve Road	6	Parallel to Villeneuve Road	69	Parallel to Villeneuve Road	6	Parallel to Villeneuve Road	6
Oil Well Impacts	e/u	+	Near edge of ROW	6	Edge of ROW - Possibly offset issues	w	n/a	-	n/a	-
Power Substation Impacts	n/a		Minimal	6	n/a	-	Minimal	8	n/a	+
North Landfill Impacts	Minimal	2	Passes through it	co	n/a	-	Passes through it	2	Impacts SW corner	m
South Landfill Impacts	n/a	**	n/a		Passes through it	2	n/a	-	n/a	+
Social Issues										
Right-of-way Requirements (acres)	83		84		83		79		74	
Land Remnants (acres)	24		61		74		34		29	
Impacts to Farmstead	n/a	F	Passes through it	10	n/a	57	Passes through it	2	n/a	-
Right-of-way Costs (\$M)	SM)									
Right-of-way Requirements	89.9	6	\$10.1	2	89.9	3	\$9.5	7	\$8.9	+
Remnants	\$2.9	-	\$7.3	2	\$8.8	2	\$4.1	2	\$3.5	2
		29		4.1		2.4		N.C.		1

^{1 =} Best 2=Good 3=Ok 4=Poor 5=Worst

Notes:

- Land Costs are for area between Giroux Road and Villeneuve Road only.

- Land costs are estimated at \$120,000/acre.

Appendix E Geotechnical Report

ISL Engineering and Land Services Ltd.

PRELIMINARY GEOTECHNICAL EVALUATION
PROPOSED OVERPASS STRUCTURES
RAY GIBBON DRIVE
ST. ALBERT, ALBERTA

0.0

E12201227

March 2008

TABLE OF CONTENTS

				PAGE				
1.0	INTE	RODUCT	TION	1				
3-0-	1.1	Section Control	al					
	1.2		t Details					
2.0	FIEL	W. Made	LABORATORY WORK					
3.0		2						
	3.1		e Conditions					
	3.2		rface Conditions					
	0.00	3.2.1	General					
		3.2.2	Villeneuve Road					
		3.2.3	Giroux Road					
		3.2.4	McKenney Avenue					
		3.2.5	Future 137 Avenue					
	3.3	Groun	dwater Conditions	5				
4.0	DISC	USSIO	N AND RECOMMENDATIONS	6				
	4.1	.1 General						
	4.2	.2 Foundations						
4.0		4.2.1	Cast-in-Place Concrete Piles	6				
		4.2.2	Dynamically Cast-in-Place Concrete Piles	7				
		4.2.3	Driven Steel Piles	8				
		4.2.4	Spread Footings	9				
	4.3	4.3 Downdrag and Negative Skin Friction						
	4.4	4.4 Stability of Approach Fills						
	4.5	4.5 Settlement of Approach Fills						
	4.6	4.6 Grading and Fill Material						
	4.7	Monito	ring Program	11				
5.0	LIMI	TATION	s	12				
6.0	CLO	SURE		12				
				77				

TABLE OF CONTENTS

		FIGURES
Figure 1	Location Plan	
Figure 2	Site Plan and Borehole Location - Villeneuve Road Interchange	
Figure 3	Site Plan and Borehole Location - Giroux Road Interchange	
Figure 4	Site Plan and Borehole Location - McKenney Avenue Interchange	
Figure 5	Site Plan and Borehole Location – 137 Avenue Interchange	

APPENDICES

Appendix A General Conditions

Appendix B Borehole Logs

1.0 INTRODUCTION

1.1 GENERAL

This report presents the results of a preliminary geotechnical evaluation conducted by EBA Engineering Consultants Ltd. (EBA) for four proposed overpass structures along Ray Gibbon Drive (formerly known as the West Regional Bypass Road) in St. Albert, Alberta. The objective of this study was to identify geotechnical issues that may impact the design and construction of the proposed structures. This work is being undertaken as part of a functional planning study being undertaken by ISL Engineering and Land Services Ltd. (ISL) for the proposed alignment of the Ray Gibbon Drive. Authorization to conduct this geotechnical evaluation was provided by Mr. Steve Melton, P.Eng. of ISL.

The proposed alignment of the Ray Gibbon Drive extends north from 137 Avenue to Villeneuve Road, along the west edge of St. Albert. At present this roadway is partially constructed (2 lanes) from 137 Avenue to Giroux Road. The intent is to extend the road in a future phase to Villeneuve Road. The roadway will also be widened to a maximum of 8 lanes in its ultimate configuration. A plan and profile drawing of the proposed roadway realignment (prepared by ISL) is attached as Figure 1.

1.2 PROJECT DETAILS

The existing gradeline alignment of the Ray Gibbon Drive drops in elevation from 137 Avenue towards the Sturgeon River then rises in elevation up to Villeneuve Road (as illustrated on Figure 1). A total of four new interchanges are proposed along this section of roadway. At each proposed interchange the proposed gradeline for the intersecting roadways are elevated over the Ray Gibbon Drive.

The future 137 Avenue interchange will be situated approximately one kilometre north of the existing intersection of Ray Gibbon Drive and 137 Avenue. At this proposed location 137 Avenue will cross over the Ray Gibbon Drive with total approach fill heights varying from 7 to 8.5 m. Based on the profile information provided, it appears that along this portion of the alignment, the existing Ray Gibbon Drive gradeline has been lowered approximately 4 m. Therefore, the additional fill height that will be needed varies from 3 to 4.5 m.

At the future McKenney Avenue intersection, the future roadway will require 8 to 9 m high approach fills over the final Ray Gibbon Drive gradeline. Overall fill heights along McKenney Avenue are up to 12 m.

The proposed Giroux Road interchange incorporates Giroux Road crossing over the Ray Gibbon Drive with two on/off-ramps on the north side of the overpass. Based on the profile provided by ISL, the Ray Gibbon Drive gradeline will be depressed approximately 5 m below existing grade. Fill heights are 3.5 to 5 m high, with overall headslope heights of approximately 11 m.

The proposed Villeneuve Road interchange will have Villeneuve Road crossing over the Ray Gibbon Drive. The proposed Ray Gibbon Drive alignment includes a cut up to 10 m just north of Villeneuve Road. Due to the raised grade along this portion of the alignment, the fill heights are approximately 4 m. Total approach fills are approximately 9 m above final roadway level.

No specifics have been provided for headslope and sideslopes for the proposed interchanges. However, headslope angles for an overpass are typically 2 to 2.5 horizontal (H) to 1.0 vertical (V), with approach fill side slopes of 4H:1V.

2.0 FIELD AND LABORATORY WORK

One borehole was drilled at each proposed interchange location. Borehole locations are presented on Figures 2, 3, 4 and 5 for the four sites. Drilling was undertaken with a truckmounted B-61 dry auger drill rig equipped with solid and hollow stem augers. Boreholes were drilled to depths between 13.4 and 33.2 m, between October 29 and 31, 2007.

Sampling during drilling comprised Standard Penetration Tests (SPTs) at 1.5 to 3 m intervals in all four boreholes. Open standpipe piezometers were installed in all boreholes upon completion of drilling. Details of the piezometer installations are shown on the borehole logs in Appendix B.

Surveying of the borehole locations and elevations was provided by ISL.

3.0 SITE CONDITIONS

3.1 SURFACE CONDITIONS

The ground surface of the proposed roadway alignment generally slopes down from north to south towards the Sturgeon River then gradually rises south of the river towards 137 Avenue. Ground surface profiles of the existing and proposed gradelines are presented on Figure 1. The ground surface was clear of trees or vegetation at all four locations.

One item of note is the presence of a former solid waste landfill on the north side of Villeneuve Road that is referred to as the Holden Landfill. The landfill is situated in the northeast quadrant of the intersection. Based on discussions with ISL, it is understood that all the waste in the landfill will be excavated and removed as part of the grading operation for interchange construction.

3.2 SUBSURFACE CONDITIONS

3.2.1 General

The general geology of the Edmonton area is summarized as follows. Prior to glaciation, the surface of the Edmonton area consisted of a well developed drainage system, which is similar to that of today. The preglacial valleys were generally wide and drained to the

northeast. Alluvial sediments were deposited by preglacial rivers known locally as the Saskatchewan Sands and Gravels. During glaciation, glacial till sheets were deposited over the Saskatchewan Sands and Gravels or the bedrock (where exposed). As the glaciers retreated to the northeast, they stagnated north of Edmonton resulting in the formation of a large proglacial lake called glacial Lake Edmonton, which extended from Fort Saskatchewan to Drayton Valley. A large delta was formed where the meltwaters from the glacier entered the lake near Stony Plain. Further away from the delta, the finer silt and clay sediments were deposited.

The study area is situated on the edge of the former glacial Lake Edmonton. Consequently, the subsurface soils comprise a combination of deltaic sands and silts, overlain by a deposit of glaciolacustrine clays and silts. Based on the "Urban Geology of Edmonton" by Kathol and McPherson (Alberta Research Council, Bulletin 32) the Ray Gibbon Drive alignment crosses a buried preglacial valley. The north end of the alignment corresponds with the crest of the buried channel (referred to as the Beverly Valley), resulting in fairly shallow bedrock. As the alignment runs to the south the bedrock drops off and is estimated to be 50 to 60 m deep at the thalweg of the preglacial valley. Boreholes and Cone Penetration Testing (CPT) from a previous investigation at the Sturgeon River bridge (by Thurber Engineering Ltd., 2003) did not encounter bedrock at termination depths of 47.5 m.

In the study area, the subsurface conditions vary dramatically due to the presence of the preglacial valley. At the north end, the subsurface stratigraphy comprises glaciolacustrine clay and silt overlying clay till, which was underlain by bedrock at a depth of 10.5 m. At Giroux Road the bedrock drops to a depth of over 27 m below existing ground surface at the borehole location. At the McKenney Avenue and future 137 Avenue interchanges, drilling was terminated at a depth of 33.2 m without encountering bedrock. Based on the literature by Kathol and McPherson, both of these future interchanges are situated in close proximity of the preglacial valley thalweg. Detailed subsoil conditions are presented on the borehole logs in Appendix B and are discussed in the following subsections.

3.2.2 Villeneuve Road

At the proposed Villeneuve Road interchange, the near surface lacustrine deposit comprises a medium to high plastic clay overlying silt at a depth of approximately 3 m. The clay is very stiff to hard near the surface and becomes siltier, softer and wetter with depth. The silt is typically soft to firm and interbedded with clay and sand layers. The clay layers are high plastic and the sand layers are generally wet.

Glacial clay till was encountered underlying the lacustrine deposits at a depth of 7.5 m. The glacial till strata underlying the lacustrine deposit comprises a heterogeneous mixture of clay, silt and sand, with occasional particles of gravel and coal. The till is typically of very stiff consistency, low to medium plastic and grey in colour. The thickness of the till deposit at Villeneuve Road is only 3 m thick.

Bedrock, comprising interbedded sandstone and clay shale, was encountered beneath the till at a depth of 10.5 m. Relative to the soil strata above, the bedrock has a consistency of hard

(for the clay shale) and very dense (for the sandstone). The clay shale is typically high plastic, while the sandstone can be poorly cemented or bonded. Both the clay shale and sandstone were medium grey to grey in colour. SPT 'N' values in the bedrock were over 100 blows/300 mm. It is common to have a weathered surface within the upper 2 to 3 m of the bedrock surface, however, this weathered zone was not apparent at this borehole location.

3.2.3 Giroux Road

The upper soils consist of a lacustrine deposit comprising primarily clay. A layer of clay fill (reworked clay) approximately 500 mm thick was identified overlying the native clay. The native clay is typically silty, damp, hard, high plastic and greyish brown in colour. At a depth of 3 m the clay becomes moist to wet, soft to firm in consistency and medium plastic.

Glacial clay till was encountered underlying the lacustrine deposit at a depth of 6 m and extended to a depth of 21.5 m. The till is typically of hard consistency in the upper 10 m, low to medium plastic and grey in colour. Below 16 m the clay till is of very stiff consistency. A thick layer of sand was identified between a depth of 21.5 and 27.2 m. This sand was fine to medium grained, saturated, dense to very dense, and interbedded with clay layers.

Bedrock, comprising clay shale was encountered beneath the sand at a depth of 27.2 m. Similar to the bedrock identified at Villeneuve Road, it was relatively hard with SPT blow counts over 100 blows/300 mm. Drilling was terminated at a depth of 30.1 m.

3.2.4 McKenney Avenue

The subsoil stratigraphy at McKenney Avenue varies dramatically from the first two locations presented above. The near surface glaciolacustrine deposit overlies alluvial sediments to a significant depth. Neither clay till nor bedrock was identified at this site.

A thin layer of asphalt was identified overlying sand and gravel fill underlain by clay fill to a depth of 500 mm. The upper native subsoil comprises glaciolacustrine clay to a depth of 6.9 m. This clay deposit is similar to other two locations comprising an upper stiff high plastic crust that becomes more silty, softer and wetter with depth.

The glaciolacustrine deposit grades into an alluvial deposit comprising silt and sand. The silt is low to medium plastic, saturated, wet to saturated, loose to very loose, with occasional clay layers and coal inclusions. SPT blow counts (N values) in the lower clay and upper silt are in range of 2 to 5 blows/300 mm. Due to the drilling technique employed (hollow stem auger), sampling was only undertaken at 3 m intervals below a depth of 12 m. Therefore a detailed description of this layer is difficult.

It appears that the alluvial deposit comprises primarily silt between 7 and 20 m. Below 20 m the alluvial deposit consists of alternating layers of silt and sand to 27 m. Below a depth of 27 m the deposit comprises primarily fine grained sand with some silt, compact in

relative density (N = 21 to 25) and saturated. Copies of particle size analyses of the sand are presented in Appendix B, after the borehole logs.

This general subsurface stratigraphy at McKenney Avenue is similar to the subsoil conditions identified at the Sturgeon River bridge during a previous evaluation by Thurber Engineering Ltd. The ground surface elevation at McKenney Avenue is approximately 5 m higher. Testholes at the Sturgeon River bridge were extended to a depth of 47.5 m and identified sand to the termination depth of the testholes. It is understood that the drilling of the deep boreholes at the Sturgeon River bridge was undertaken using a cone penetration testing (CPT) drill, which permitted much greater penetration of the alluvial deposit. The depth to top of bedrock was not identified at the Sturgeon River.

3.2.5 Future 137 Avenue

The subsurface stratigraphy at the future 137 Avenue interchange is similar to the conditions identified at the McKenney Avenue interchange location. In general, there is an upper clay layer that grades into silt, which in turn is underlain by sand.

There is a 1.4 m thick layer of clay fill that is silty, stiff, medium plastic and dark greyish brown in colour. The underlying native glaciolacustrine deposit consists of a stiff, medium plastic silty clay, which is similar in composition to the overlying fill.

At a depth of 3.8 m, the clay grades into a clayey silt that is sandy, damp, of compact relative density, low plastic, with interbedded sand layers. With depth the silt becomes wet and softer. The silt grades into a fine to medium grained sand at 11.5 m.

The sand is saturated and loose in terms of relative density. With depth the sand becomes compact to dense. Blow counts in the sand below 15 m are typically between 25 and 35 blows/300 mm. At this location bedrock is estimated to be 50 to 60 m below existing grade.

3.3 GROUNDWATER CONDITIONS

Groundwater levels were measured upon completion of drilling and then again on November 9, 2007. Table 1 summarizes these groundwater level measurements.

Borehole	Depth of Tip of Standpipe	Groundwater Level – Depth Below Grade (m)	Groundwater Elevation* (m)		
	(m)	November 9, 2007			
E12201227-01	8.1	4.45	676.28		
E12201227-02	4.5	Dry	N/A		
E12201227-03	9.5	4.3	647.5		
E12201227-04	11.6	8.2	649.1		

Geodetic

It should be noted that groundwater levels will fluctuate seasonally and in response to climatic conditions. Accordingly, groundwater levels should be monitored periodically if there is an interest in the long-term groundwater levels at these sites.

4.0 DISCUSSION AND RECOMMENDATIONS

4.1 GENERAL

The following presents a discussion of geotechnical issues that may impact the design and construction of the four proposed overpass structures. It is assumed that additional geotechnical work will be undertaken prior to finalizing design for the structures.

Assuming that the all the waste is removed from the landfill site located north of Villeneuve Road, there are no significant development issues at this site. Subsurface conditions at Giroux Road are also considered favourable for the proposed structure with no major concerns other than stability of the headslope due to the proposed cut at this location, which will expose the upper lacustrine deposit.

The two southerly proposed interchange locations are significantly different than the two northerly locations. At the 137 Avenue and McKenney Avenue locations the subgrade is primarily silt and sand, and bedrock or a competent bearing strata was not encountered. Foundations at these two locations will likely comprise relatively long friction piles. Due to the soft silt identified at all four locations, there is a concern with long-term settlement associated with the placement of the approach fills, particularly at McKenney Avenue. It is likely that the use of wick drains or similar methods of accelerating consolidation settlement will be required at McKenney Avenue to dissipate pore pressures, which is similar to the approach adopted for the Sturgeon River bridge.

Driven steel, dynamically cast-in-place concrete and cast-in-place concrete piles are considered feasible foundation types for the proposed bridge structures at Villeneuve Road and Giroux Road. Due to the proposed depth of cut at Giroux Road and the fact that a hard clay till was identified at a depth of 6 m, there is also the possibility of placing the centre pier on a spread footing foundation. The depth of the clay till at Villeneuve Road is greater and the clay till not as competent, therefore the possibility of a spread footing for the centre pier is less likely at the proposed Villeneuve Road location. At 137 Avenue and McKenney Avenue driven steel piles are likely the most feasible considering the subsurface conditions. Preliminary recommendations for these foundation options are presented in the following sections.

4.2 FOUNDATIONS

4.2.1 Cast-in-Place Concrete Piles

Cast-in-place concrete piles are a common foundation type used in the Edmonton area and are presented as feasible foundation alternatives for the proposed structures at Villeneuve

Road and Giroux Road. Piles may be designed on a combination of both skin friction and end bearing.

At Villeneuve Road end bearing belled piles could be installed in the glacial clay till at a depth of approximately 9 m. However, the underlying bedrock is at a depth of 10.5 m and would provide much higher end bearing for cast-in-place concrete piles. It is believed that a rock socket pile within the bedrock with end bearing at a depth of 13 m would also provide a cost effective foundation option. The silt layer overlying the clay till may generate some problems and could require temporary casing during pile installation to a depth of approximately 8 m.

At Giroux Road a very stiff to hard clay till stratum was identified at a depth of 6 m. The upper portion of the clay till was hard in consistency. Below 15 m, the clay till becomes softer in consistency, but still provides a good bearing strata. It is envisaged that belled piles founded at a depth of approximately 9 m below existing grade would provide the most economical foundation option.

In areas where new fill material will be placed for approach fills, or if any existing fill materials are left in place, negative skin friction will need to be addressed in the pile design.

Bell diameters should be a minimum of 2 and a maximum of 3 times the shaft diameter. The ratio of the depth to bell base and bell diameter should be a minimum of 2.5.

Design for belled piles may consider both end bearing and shaft friction. Shaft friction should be neglected for the top 1.5 m of the pile length and within one shaft diameter above the top of the bell.

Bell formation may be difficult within the bedrock stratum. Therefore, if end-bearing resistance is necessary to support the downward loading and belling is not possible, a special cleaning bucket should be used to clean the bottom of a straight shaft pile bore in the bedrock stratum, creating a "rock-socket" pile. It should be noted that the end-bearing diameter of the base of a rock-socket pile is slightly smaller than the shaft diameter. In calculating the end-bearing area for a rock-socket pile, a pile base diameter that is 5 percent smaller than the shaft diameter should be adopted.

The bases of all end-bearing piles must be thoroughly cleaned of all loosened material by mechanical or, if necessary, hand methods. Following drilling and cleaning, pile bores should be inspected to ensure that an adequate bearing surface has been prepared at an appropriate depth.

4.2.2 Dynamically Cast-in-Place Concrete Piles

Dynamically cast-in-place (compacto) piles are considered feasible for the proposed structures at Villeneuve Road and Giroux Road and possibly 137 Avenue. At Villeneuve Road the piles could be based in the clay till at a depth of approximately 9 m and at a depth of 8 m at Giroux Road. At the proposed 137 Avenue interchange, compacto piles founded in the sand at a depth of approximately 13 m may be feasible.

Due to the depth of cut and relatively shallow hard clay till at Giroux Road location, the use of compacto piles may not be feasible for the centre pier.

One drawback with this pile type is nominal reinforcing, which limits their lateral capacity. Providing a suitable bearing strata is available for basing the compacto piles, typical allowable design load capacities for varying shaft diameters are as follows:

Shaft Diameter	Typical Allowable Static Load
(mm)	in Compression (kN)
400	800
500	1100
600	1550

Although preliminary design information has been provided for this foundation alternative, it should be noted that a specialist foundation contractor usually completes the final pile foundation design. The following information should be considered in the foundation design.

Experience has found that dynamically cast, "zero slump" concrete is inherently a much more variable material than conventional plastic concrete. The quality and compressive strength of zero slump concrete is highly sensitive to moisture content. Consequently, proper moisture conditioning of the concrete mix is essential to producing high quality concrete. The concrete mix should be re-tempered as required to produce a compatible mix. Given the potential for high variability, the average compressive strength of zero slump concrete should be significantly higher than the design requirement. Low early age (3 and 7-day) compressive strengths indicate possible problems with achieving the design strength. Consequently, 7-day compressive strengths that are more than 3 MPa less than the design strength should be investigated immediately.

Dynamically cast-in-place pile bases can also be used in combination with plastic concrete shafts. Plastic concrete can be produced without the high variability of compacted shaft concrete, and permits the use of higher fly ash contents for greater mix efficiency.

4.2.3 Driven Steel Piles

The use of driven steel H-piles or pipe piles are considered feasible alternatives for all four sites. Such piles may be designed using both skin friction and end-bearing. At the Villeneuve Road interchange piles would likely encounter refusal at a depth of approximately 15 m. At the Giroux Road interchange the driven steel piles would likely penetrate through the upper hard clay till and terminate in the bedrock. Estimated pile lengths are approximately 30 m below existing grade.

At both the 137 Avenue and McKenney Avenue interchange locations, driven steel piles will be feasible. It is anticipated that pile capacities at 137 Avenue should be slightly higher than McKenney Avenue based on the limited drilling conducted. It is known that several open ended pipe piles were installed and tested using a Pile Driving Analyzer (PDA) at the Sturgeon River bridge site. Pile diameters of 600 mm and 12.7 m wall thickness driven to a depth of 35 m were designed with an ultimate capacity of 3600 kN. It is speculated that similar capacities would be achievable for piles installed at the McKenney Avenue interchange. Piles installed to a similar length at 137 Avenue should be capable of slightly higher capacity.

4.2.4 Spread Footings

The use of a spread footing foundation is considered primarily feasible for the centre pier at the Giroux Road interchange. The proposed alignment for Ray Gibbon Drive will necessitate a cut of approximately 5 m and a hard clay till layer was encountered at a depth of 6 m. Typical depth of burial for footings would necessitate excavating approximately 2.5 m which would place the base of a footing approximately 1.5 m into the clay till.

Spread footing foundations may also be feasible for the Villeneuve Road interchange, however, the clay till is slightly deeper and is only of very stiff consistency. The final decision will be dictated to a large degree by the depth of cut required for the roadway gradeline and elevation of the clay till relative to the roadway elevation of Ray Gibbon Drive.

4.3 DOWNDRAG AND NEGATIVE SKIN FRICTION

The issue of negative skin friction and down drag are not considered to be a major concern at the Villeneuve and Giroux Road locations. However, this will be an issue at the McKenney and 137 Avenue interchanges. In particular, the soft sediments at the McKenney Avenue will be a greater concern.

If adequate time for settlement of the approach fills is not permitted, the upper portion of the pile shaft installed for the abutments will have to be designed for downdrag associated with long-term settlement of the approach fills. Any portion of the pile shaft that is located within the approach fills for the abutments should incorporate negative shaft friction. The issues of negative shaft friction do not apply to the piles supporting centre piers.

The use of wick drains will likely be required at the McKenney and 137 Avenue interchanges. Wick drains will greatly improve the rate of consolidation at both these locations. It is understood that wick drains were installed at the Sturgeon River bridge. Details of the performance of the settlement are not known, however this historical data will provide valuable insight regarding the rate of settlement and rate of pore pressure dissipation.

If sufficient time is not permitted for approach fill settlement, it is recommended not to utilize battered piles in the abutments. Battered piles would be subjected to non-uniform

stresses and strains as the soil below the piles settles away from the underside of a battered pile.

4.4 STABILITY OF APPROACH FILLS

Typically, head slope angles for the approach fills are between 2 and 2.5H:1V and the sideslopes at 4H:1V. It is assumed that similar geometry will be adopted for the proposed new overpass structures. It must be noted that the stability of the approach fills is a function of soil type used to construct the embankments. Once the material type for the fills has been confirmed the analyses must be reviewed.

Pore pressures can generate within the underlying native strata and have a significant impact on the stability of the approach fills. Therefore design of the approach fills must consider this aspect in the analysis. In some instances the rate of fill placement is dictated by the pore pressures generated beneath the approach fills.

The concern with stability is primarily associated with the interchanges proposed at McKenney and 137 Avenue. It is anticipated that a flatter headslope in the order of 3H:1V will be required at both these locations. Another technique used to improve stability is the installation of wick drains to dissipate excess pore pressure that is generated during fill placement. As discussed in the previous section, valuable data would have been gathered during the construction of the approach fills for the Sturgeon River bridge. A detailed review of the data would assist in optimizing the design for wick drain spacing. A wick drain spacing of 1.5 m was used for the Sturgeon River bridge and is considered a reasonable estimate for the proposed McKenney and 137 Avenue interchanges.

At the proposed Giroux Road interchange the depth of cut will be approximately 5 m, which will expose the majority of the lacustrine deposit at this location. With depth the lacustrine deposit becomes softer, the analysis of a possible failure surface daylighting near the toe of the headslope will require detailed analysis. Slightly flatter headslopes may be required to ensure an adequate factor of safety.

4.5 SETTLEMENT OF APPROACH FILLS

Fill settlement comprises a combination of elastic settlement, which occurs immediately during construction, and a consolidation component, which is time dependant and requires the expulsion of pore water from the native subsoil. To calculate the elastic and consolidation settlements at this preliminary stage is beyond the limits of this report. Settlements in the order of 500 mm would not be unreasonable. However, the data obtained from the Sturgeon River bridge construction would be able to provide a more accurate estimate of settlement.

If adequate time for settlement is not permitted, there is concern with any piping or surface utilities that may run through or along the approach fill. Due to the long-term settlements, it must be anticipated that there could be distress in these utilities. Therefore, some form of flexible connection should be designed.

In order to accelerate the settlement process, it is recommended that a surcharge be placed on top of the approach fills. In general the greater the surcharge, the greater the impact on increasing the rate of settlement and reducing the long-term settlement that will occur after construction completion. Care must be taken not to place too great a surcharge, as a slope failure may be generated. A fill surcharge of 25 to 50% of the fill height may be feasible, providing instrumentation that is installed within the approach fills indicates favourable performance of the approach fill.

4.6 GRADING AND FILL MATERIAL

It is assumed that the majority of the borrow used for construction of the ramps and approach fills will comprise native borrow from within the limits of the Ray Gibbon Drive right-of-way. Standard specifications typically require compaction to a minimum of 95 percent of Standard Proctor maximum dry density at optimum moisture content.

Topsoil, organics and any vegetation should be excavated and removed prior to placement of any fill. Care should be taken not to permit moisture content too high above optimum, as material strength is related to the moisture content of the fill. Typically, as the moisture content increases, the shear strength of the fill decreases. Another concern with moisture contents above optimum is that there is a potential for generating pore pressures during fill placement. High pore pressures with the embankment fills can lead to a lower factor of safety during construction. It should be noted that this issue of pore pressure generation is primarily for clay fill. Sands and silts are much more permeable and have a lower tendency to generate pore pressures. If clay is used as fill for the embankment, care must be taken to assess whether this is an issue.

At locations where wick drains are anticipated, an initial layer of free-draining sand (approximately one metre thick) will be required at the base of the approach fills. This granular layer is required to permit the drainage of water that will be collected by the wick drains as excess pore pressure forces water to be expelled from the native soils.

4.7 MONITORING PROGRAM

During construction of the proposed embankments, it is critical that the subsoil response to embankment loading be monitored to assess slope stability and confirm completion of consolidation and settlement. As a minimum, it is recommended that a grid of survey hubs be installed on the surface of the approach fills to monitor on-going settlements. Vertical inclinometers could also be installed in the headslope to monitor stability of the approach fills. At sites where wick drains are installed, it is common to install piezometers to record the dissipation of porewater pressures.

5.0 LIMITATIONS

Recommendations presented herein are based on a geotechnical evaluation of the findings in four boreholes. It is assumed that more detailed investigations will be required at all four proposed interchange locations in the future. The conditions encountered during the fieldwork are considered to be generally representative of the sites.

This report has been prepared for the exclusive use of ISL Engineering and Land Services Ltd. for specific application to the development described in this report. It has been prepared in accordance with generally accepted geotechnical engineering practices. No other warranty is made, either expressed or implied. For further limitations, reference should be made to the General Conditions in Appendix A.

6.0 CLOSURE

We trust this report meets your present requirements. Should you have any specific questions or concerns regarding this report, please contact our office at your convenience.

EBA Engineering Consultants Ltd.

Reviewed by:

A.F. (Tony) Ruban, P.Eng. Senior Geotechnical Engineer Direct Line: 780.451.2129 truban@eba.ca

Marc Sabourin, P.Eng. Senior Project Director Direct Line: 403.329.9009 msabourin@eba.ca

PERMIT TO PRACTICE EBA ENGINEERING CONSULTANTS LTD.

1008-

Signature

03-18 PERMIT NUMBER: P245

tran

The Association of Professional Engineers, Geologists and Geophysicists of Alberta

REFERENCES

- Kathol, C.P. and McPherson, R.A., 1975. "Urban Geology of Edmonton", Alberta Research Council, Bulletin 32.
- Thurber Engineering Ltd., 2003. West Regional Road Over Sturgeon River Geotechnical and Environmental Investigation. Prepared for Infrastructure Systems Ltd., dated September 12, 2003 (File No. 19-598-118).
- Urkkada Technology Ltd., 2005. Dynamic Testing and Analysis of Piles (Report 2), Sturgeon River Bridge, St. Albert, Alberta, dated February 7, 2005 (File No. 0412DH427).

FIGURES

APPENDIX A GENERAL CONDITIONS

GEOTECHNICAL REPORT - GENERAL CONDITIONS

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This geotechnical report pertains to a specific site, a specific development and a specific scope of work. It is not applicable to any other sites nor should it be relied upon for types of development other than that to which it refers. Any variation from the site or development would necessitate a supplementary geotechnical assessment.

This report and the recommendations contained in it are intended for the sole use of EBA's client. EBA does not accept any responsibility for the accuracy of any of the data, the analyses or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. EBA does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

3.0 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

4.0 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. EBA does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.

5.0 SURFACE WATER AND GROUNDWATER CONDITIONS

Surface and groundwater conditions mentioned in this report are those observed at the times recorded in the report. These conditions vary with geological detail between observation sites; annual, seasonal and special meteorologic conditions; and with development activity. Interpretation of water conditions from observations and records is judgmental and constitutes an evaluation of circumstances as influenced by geology, meteorology and development activity. Deviations from these observations may occur during the course of development activities.

6.0 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic,

7.0 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

8.0 INFLUENCE OF CONSTRUCTION ACTIVITY

There is a direct correlation between construction activity and structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques are known.

9.0 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, as well as the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

10.0 DRAINAGE SYSTEMS

Where temporary or permanent drainage systems are installed within or around a structure, the systems which will be installed must protect the structure from loss of ground due to internal erosion and must be designed so as to assure continued performance of the drains. Specific design detail of such systems should be developed or reviewed by the geotechnical engineer. Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function.

11.0 BEARING CAPACITY

Design bearing capacities, loads and allowable stresses quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition assumed. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions assumed in this report in fact exist at the site.

12.0 SAMPLES

EBA will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the client's expense upon written request, otherwise samples will be discarded.

13.0 STANDARD OF CARE

Services performed by EBA for this report have been conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practising under similar conditions in the jurisdiction in which the services are provided. Engineering judgement has been applied in developing the conclusions and/or recommendations provided in this report. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of this report.

14.0 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, EBA has not been retained to investigate, address or consider and has not investigated, addressed or considered any environmental or regulatory issues associated with development on the subject site.

15.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), the Client agrees that only the signed and sealed hard copy versions shall be considered final and legally binding. The hard copy versions submitted by EBA shall be the original documents for record and working purposes, and, in the event of a dispute or discrepancies, the hard copy versions shall govern over the electronic versions. Furthermore, the Client agrees and waives all future right of dispute that the original hard copy signed version archived by EBA shall be deemed to be the overall original for the Project.

The Client agrees that both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. The Client warrants that EBA's instruments of professional service will be used only and exactly as submitted by EBA.

The Client recognizes and agrees that electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

APPENDIX B BOREHOLE LOGS

TERMS USED ON BOREHOLE LOGS

TERMS DESCRIBING CONSISTENCY OR CONDITION

COARSE GRAINED SOILS (major portion retained on 0.075mm sieve): includes (1) clean gravels and sands, and (2) silty or clayey gravels and sands. Condition is rated according to relative density, as inferred from laboratory or in situ tests.

DESCRIPTIVE TERM	RELATIVE DENSITY	N (blows per 0.3m
Very Loose	0 to 20%	0 to 4
Loose	20 to 40%	4 to 10
Compact	40 to 75%	10 to 30
Dense	75 to 90%	30 to 50
Very Dense	90 to 100%	greater than 50

The number of blows, N, on a 51mm O.D. split spoon sampler of a 63.5kg weight falling 0.76m, required to drive the sampler a distance of 0.3m from 0.15m to 0.45m.

FINE GRAINED SOILS (major portion passing 0.075mm sieve): includes (1) inorganic and organic silts and clays, (2) gravelly, sandy, or silty clays, and (3) clayey silts. Consistency is rated according to shearing strength, as estimated from laboratory or in situ tests.

DESCRIPTIVE TERM	UNCONFINED COMPRESSIVE STRENGTH (kPa)
Very Soft	Less Than 25
Soft	25 to 50
Firm	50 to 100
Stiff	100 to 200
Very Stiff	200 to 400
Hard	Greater Than 400

NOTE: Slickensided and fissured clays may have lower unconfined compressive strengths than shown above, because of planes of weakness or cracks in the soil.

GENERAL DESCRIPTIVE TERMS

Slickensided	- having inclined planes of weakness that are slick and glossy in appearance.
Fissured	 containing shrinkage cracks, frequently filled with fine sand or silt; usually more or less vertical.
Laminated	- composed of thin layers of varying colour and texture.
Interbedded	- composed of alternate layers of different soil types.
Calcareous	- containing appreciable quantities of calcium carbonate.
Well Graded	 having wide range in grain sizes and substantial amounts of intermediate particle sizes.
Poorly graded	 predominantly of one grain size, or having a range of sizes with some intermediate size missing.

UNIFIED SOIL CLASSIFICATION †

MA	JOR DIVISI	ONS	GROUP SYMBOLS	TYPICAL NAMES		CLASS	SIFICATION (CRITERIA				
	7 6 4	CLEAN	GW	Well-graded gravels and gravel-sand mixtures little or no fines	ntage of fines GW, GP, SW, SP GM, GC, SM, SC Borderine Classification requiring use of dust symbolic	$C_u = \frac{D_{60} \cdot D_{10}}{(D_{30})^2}$ $C_c = \frac{(D_{30})^2}{D_{10} \times D_{60}}$	Greater tha					
	GRAVELS 50% or more of coarse fraction retained on No. 4 serve	GRA	GP	Poorry graded gravels and gravel-sand mixtures. little or no lines	SW, SP SM, SC e Classiti use of du	Not meeting both criteria for GW						
D SOILS	SO S	GRAVELS WITH FINES	GM	Şitty gravets, gravet-sandi salt mixtures	percentage of fines GW GP SW I Borgerine Cla	Attending limits plot below "A" line or playborly index less than 4			Atterberg limits plotting in hatched area are borderline classification			
WZ 6	1		GC	Clayey gravels, gravet-sand- clay mixtures	erce	Atterteig limits plot and plasticity index of		requiring use of dual symbols				
COARSE-GRAINED SOILS	50 00	CLEAN	sw	Well-graded sands and gravelly sands, little or no fines	Classification on basis of p to Table 3 No. 200 serve than 12% Pass No. 200 serve the 72% Pass No. 200 serve	$C_u \cdot D_{60} / D_{10}$ $C_c \cdot \frac{(D_{30})^2}{D_{10} \times D_{60}}$	Greater the Between 1	100				
More tha	SANDS More than 50% of coarse fraction passes No. 4 sieve	SAS	SP	Poorty graded sands and gravelly sands, little or no fines.	serbcation % Pass N 2% Pass Pass No	Not meeting both critima for SW						
	More Coass	DS FR ES	SM	Sity sands, sand-sitt mixtures	Cla Less than 5 More than 5% to 12%	Attertieng bends plot or plasticity index le		Atterberg limits plotting in hatched area are				
		SANDS WITH FINES	sc	Clayey sands, sand-cray mixtures	More S% 10	Atterberg limits plot and plasticity index		borderline classifications requiring use of dua- symbols				
	14S		ML	knorganic sits, very fine sands, rock floor, sitty or clayey line sands	For cla	LASTICITY CHART				N		
STIC	SILTS AND CLAYS	SO% or less	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Atterbe w 40 area ar	oils and line fraction of coarse rained soils. CH Illerberg limits plotting in hatched rea are borderline classifications. Spuring use of dual symbols.				11		
NE-GRAINED SOILS	SILTS	2 28	OL	Organic sits and organic sity clays of low plasti- city	Equation	on of A-less P1 073 (LL - 20)	a.t.m	-	-		
FINE-GRAINED SOILS		, Š	мн	Inorganic sits, micacenis or diatomaceous line sinds or sits, elastic sits	PLASTICITY 02	CL	1	мна	ОН	+		
8	S AND CL	greater than 50%	СН	Inorganic clays of high prasticity, fall clays	7	CE MEZ ML	& OL		-	1		
	SILTS	8920	ОН	Organic clays of medium to high plasticity	0 G 10		10 50	F0 70	80	90 100		
IIGHL	ORGANIC	SOILS	PI	Peat, muck and other highly organic soils	* Based	on the material pass Designation D 2487	sing the 3-in.		eve			

WRR BYPASS - PROPOSED INTERCHANGES ISL ENG						L ENGINEERING & LAND SERVICES LTD.								PROJECT NO BOREHOLE NO.					
VILLENEUVE ROAD DRILL:						RILL: SOLID STEM AUGER							E12201227-01						
ST. AL	LBERT, ALBE	RTA	9	47281N; 20971E							ELEVATION: 680.73m								
SAMP	LE TYPE	DISTURBED	NO RECOVER	y 🛛	SPT		A-CASING S				HELBY TUBE CORE								
BACK	FILL TYPE	BENTONITE	PEA GRAVEL		SLOUGH	.,		GROUT	- 6	DRI	LL CUT	TINGS	SA	ND		72			
Depth (m)		SOIL DESCRIPTION			SAMPLE TYPE SPT (N)	MOISTURE CONTENT	PLAS	STIC M		2UID -1 80	20 ◆ U 50	NCON 100 OCKET	FINED (k	80 Pa) ◆ 200	Slotted	Elevation (m)			
2 3	- very stiff - very stiff - stitler layers - still layers, v	amp, hard, high plas moist, medium plas vet, firm, oxide staini wet, medium plastic, is s , saturated	ng		7	22.7 23 38 34.5 37.6 27.7			1		4	¥		•		680.0_ 679.0_ 678.0_			
Skep San 0	- rapid dilatar - small sand - 200mm thic				14	30.3 28.4 19.5					A	•			indicated and a second	675.0			
8	- coal inclusion - small sand - very stiff	iiff, medium plastic, dark	grey	2	17.6							*		Indian.	673.0				
11		- silty, moist, hard, h edded sandstone la			22	20.7						4	4	A	 04	670.0			
13	SANDSTONE light grey		m grained, moist, very d	ense,	119	27.3									19	668.0_			
14	slough - 5.18 water - trace - 4.45 r	HOLE (13.41 metr metres at 0 hrs. at 0 hrs. netres at 11 days stalled to 8.08 metre														667.0_			
éoc	EBA	Engineer	ring Consu	ıltarı	ts Lt	d.	REVIE	ED BY: I WED BY ING NO	: AFR	227-01			PLETIO PLETE: 1 of 1			3.41m			

WRR	BYPASS - PR	OPOSED INTE	RCHANGES	ISL ENG	GINE	ERING	& L/	ND SER	VICES	SLTD.	1	PRO.	JECT	NO	BOR	EHOL	E NO.
GIRO	UX ROAD			DRILL:	SOL	DSTE	M Al	JGER					E	1220	1227-0	02	
ST. AL	LBERT, ALBE	RTA		9452251	N; 21	141E					EL	EVA	TION:	674.	11m		
SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🛛	SPT		_ 8	A-CA	SING		SHELBY	TUBE		COR	E		
BACK	FILL TYPE	BENTONITE	PEA GRAVE	L	SLOU	JGH		GRO	UT	01	ORILL CU	TTING	s 🔯	SAN	D	170	
	-	-	100000000000000000000000000000000000000		w						T		-				42
E			S.II.		SAMPLE TYPE	<u>-</u>	MOISTURE CONTENT				STA	NDAR	D PENE	TRATIC	ON (N) 1	_ i	Elevation (m)
Depth (m)			OIL		щ	SPT (N)	S				-	20	40	60	80	Slotted	tion
Dep.		DESCR	RIPTION		MP	Sp	T.	PLASTIC	M.C.	LIQUID			ONFINE 100 1	150 (KP)		Siez	eva
					SA		VOIS	-	•			POCK	ET PE				ш
- 0	CLAY (REWO	RKED), silty, organi	cs, damp, hard, mediur	nt		-	27.6	20	40	60 80	++1	00 3	200 3	00 4	100	-	674.0
2	plastic, t	olack			ୃ				ii.	4.4.4.4		Ш.	ļļ.	ļ.,Ļ.	^	BB	
1	1000	amp, hard, high pla	187 74		Ħ		23.9	•						H	^	B	072.0
	- sitter layer - crumbly	s, medium plastic, li	ght greyish brown		Ш				11				H	H	TT	BE	673.0_
-	Guillory				Ħ		20.8		rrinin	1			trit	Ħ	111	13	-
_ 2					Ш	+	22.2			4.4.4.4			įį	įį.	ļ.,į.,	13	672.0
ă I	- very stiff to	hard				8	20.7	•								77	
	- moist etiff	greyish brown			A									11.		130	
_ 3	- 110131, 3011,	greyiari dicimi			П		27.7	••••••	****	1000	"	•	111	1	111	13	671.0_
-	- wet, firm		1				2012					·	įį		ļį	毬	
4	- Mod intil						33.5		•			i	Įį.,	l.i.	i.i.	E	670.0
					Ш	_			Ш					11		NEX.	010.0
					Ħ		32.6		•		***		TT	1		4-19	
_ 5												ļļ	ļļ		şj		669.0
	alou (NIII) na	alvata at ill			Ħ	10	31.6						i.i.	i.i.	1.1.		
	- clay (till) po		wat at War and an also	the dade	A.	225			11				11				
_ 6	grey, co.	sitty, sandy, moist to al inclusions	wet, stiff, medium plas	suc, oark			19.6	•	***	***		•	111	***	111		668.0_
-	- sand pocke	ts, moist			Ш										ļ[1
7					F								•	i.i.	LL.		667.0
. 7	Same and the same	2000			Н												007.0
	 sand pocke very stiff 	ts, wet				- 1	15.1		1	1111		·"	TT		TT		
_ 8	- sandier lay	ers			Ш					+++++					····		666.0
	- difficult drill	ina												i.i.	ļ.,ļ.,	M	
9					A	71											
							13.3	•	11					*	T	1111	665.0_
4	- hard									++++					****		-
_ 10	- some sand,	medium to high pla	istic									ļļ	įj		ļ.,j.,		664.0
.					A	74							Ш		^	1111	
E., 1					F		15.7	•									
_ 11										111111			4	int.	· · · · ·		663.0
-								., (., ., ., .,				j	····	į	ii		
12					М	53						LI.		Ll.	•		0000
7					F		13	•		TTT					•		662.0
201					П			*****		4-4-4-1			111	-	7-1-	m	1
13					Ħ	30							i	i	ļļ.,	{	661.0
	111				X	44							•		1 1		
	- very stiff to	hard					14.9	•	T					•			
- 14									*****	1111	· · · · · ·		11	:··÷	1	1111	660.0_
. 14						100				4-4-4-1		ļļ	įį	ii.	ļļ		
15					X	37	-n		11					11	11		
2							L	OGGED I							DEPT).1m
eoc	EBA	Enginee	ring Cons	ultar	its	Ltd.	R	EVIEWE			0.0				7/10/2	9	
23.50	The contract of the contract of	and the Contract of	29		V.		D	RAWING	NO: 1	2201227-	02	Pag	e 1 of	3			

	TO SECURE	ROPOSED INTE	RCHANGES			-	AND SERVICES	LTD.	PROJE	CT NO BORI		. NO
	IX ROAD			DRILL:		-	UGER			E12201227-0)2	
CONTRACTOR	BERT, ALBE	and the second second		9452251	Name and Address of the Owner, where	E	process	CTT.	- minutes and the same of the	ON: 674.11m		
_	E TYPE	DISTURBED	NO RECOV	Tenent.	SPT		A-CASING		ELBY TUBE	CORE		
ACKE	ILL TYPE	BENTONITE	PEA GRAVI	EL I	SLOUGH	-	GROUT	☐ DR	ILL CUTTINGS	SAND		
Depth (m)		SC DESCR			SAMPLE TYPE SPT (N)	MOISTURE CONTENT	PLASTIC M.C. 20 40 61	LIQUID) 80	20 40 ◆ UNCON 50 100	FINED (kPa) ◆) 150 200 Γ PEN. (kPa) ▲	Slotted	Flevation (m)
15	- very stiff					17.6	•			*		659.
16	- stiff to very	stiff			25	18.7	•		•			658.
18						18.9		+++				656.
	- very stiff		(0)								Ш	
19		*			20	20.1	•				3	655.
11					-							654
						18.6	•					000
3	dark gre - dense to ve - small interb	у	nedium grained, satur	rated,	n				•			652 651
5					53	26.4	•					650 649
6	- 450mm thic	k clay layer, moist, v	ery stiff, high plastic,	dark grey		22.1	•					648
	CLAVOUALE	silly great hand	edium plastic, light g	7001	23	23.5						647
		, dark grey to light gr		.,	232					Å 230		646
	- coal inclusion	ons		5		32.9	•			175		645
0					×175/225		OCCED BY: DIK	1.1.1.	COM		H: 20	im
00	EBA I	Engineer	ring Cons	sultan	ts Lt	d. F	OGGED BY: DJK EVIEWED BY: AF RAWING NO: 12		COMP	PLETION DEPT PLETE: 07/10/2		iii)

122

WRR	BYPASS - PR	OPOSED INTER	RCHANGES	ISL ENG	SINEERING	& LAN	D SERVICES	LTD.	PROJE	CT NO BOR	EHOLE	E NO.
GIRO	UX ROAD			DRILL:	SOLID STE	M AUG	ER			E12201227-)2	
ST. Al	LBERT, ALBEI	RTA		9452251	V; 21141E				ELEVATI	ON: 674.11m		
SAMP	PLE TYPE	DISTURBED	NO RECOVE	RY 🛛	SPT	E	A-CASING	SHE	ELBY TUBE	CORE		
BACK	FILL TYPE	BENTONITE	PEA GRAVEL		SLOUGH		GROUT	OR!	ILL CUTTINGS	SAND		
ST. AI	END OF BORE slough - neck water - dry at - dry a	DISTURBED BENTONITE SC DESCR EHOLE (30.10 metring at 12.50 metres)	NO RECOVER PEA GRAVER PIL IPTION es) at 0 hrs.	9452251 RY 🔀	N; 21141E SPT	IRE CONTENT	A-CASING GROUT ASTIC M.C.	DRI	ELBY TUBE ILL CUTTINGS STANDARD F 20 40 UNCON 50 100 A POCKE	ON: 674.11m CORE SAND CENETRATION (N)		ш
42 43 44												631.0 630.0
45	EDA I	Engines	ina Cons	ultan	to I to	LOG	GED BY: DJI			PLETION DEPT		1m
ebo	EBAL	=ngineer	ing Const	uitan	is Lia	DRA	IEWED BY: A WING NO: 12		Page :	PLETE: 07/10/2 3 of 3	9	

WRR	BYPASS - PR	OPOSED INTE	RCHANGES	ISL EN	GINE	ERING	3 & L	AND	SER	VICE	SLT	D.		PR	OJE	CT NO) BO	ORE	HOL	E NO.
McKE	NNEY AVENU	JE		DRILL:	HOL	LOW	STEN	A AL	JGER	0						E12	20122	27-0	3	
ST. AL	LBERT, ALBE	RTA		944037	N; 2	1752E							E	LE	VATIO	ON: 65	57m			
SAMP	LE TYPE	DISTURBED	NO RECOVE	ERY 🛚	SPT		= 1		A-CA				HELBY	YTU	BE		ORE			
BACK	FILL TYPE	BENTONITE	PEA GRAVE	EL III	SLC	UGH			GRO	UT.		0	RILL C	UTT	INGS	∷ s	AND			
Depth (m)		SC DESCR			SAMPLE TYPE	SPT (N)	MOISTURE CONTENT	PL	ASTIC 20	M.0	60	LIQUID 80		20 ◆ UN 50	40 NCONF 100 NCKET	60 INED 150	ATION (80 (kPa) ◆ 200 (kPa) ▲ 400	S	Slotted	Elevation (m)
0	ASPHALT - (6)		of silt, well graded, n	noiet			27.2	1	•					1					1	
1	CLAY (FILL) - CLAY - silty, or - trace of org	yish brown, (165mm silty, moist, hard, hig ganics, damp, hard anics, stained very o	thick) th plastic, greyish bro medium plastic, blac dark greyish brown	wn		14	27.8 28		•					•		4				656.0_
_ 2	- moist, very	stiff, high plastic, gre eposits	ryish brown		X	7	36.8			•				+						655.0_
3	- siltier layers	, moist to wet, oxide	staining		X	6	40.3			•										653.0
Player 11		anid ellatones, natural	ated dads arms																	652.0_
6	- sit tayers, to	apid dilatancy, satur	aleo, dark grey		X	3	41.5			•				2						651.0_
8	SILT - clayey, s - clay layers	saturated, very loose	, medium plastic, dar	k grey	X	2	38			•			•							650.0_
9	- coal inclusio	oris			X	4	31.4	in its in		H				•						648.0_
_ 10					X	5	33.6			•										647.0
_ 11 _					X	5	35.9			•										646.0_
_ 12																				645.0_
13																				643.0
15	- sandy, loose	to compact			X	10	29.4		•				1							642.0
ébo	EBA I	Engineer	ing Cons	ultai	nts	Lta	. R	EVI	SED E EWEL VING	DBY:	AFR	1227-(03	C		LETE	ON DE			.22m

SAND - some sill, medium grained, saturated, compact, dark 15 28.3	WRR	BYPASS - PR	OPOSED INTER	RCHANGES	ISL EN	SINE	ERING	84	AND SE	RVICES	SLTD.	P	ROJE	CT NO.	- BOR	EHOLE	E NO.
SAMPLE TYPE DISTURBED No RECOVERY SPT ACASING SPELEY TUBE CORE COMPLETION SPT SAND SOUL SPT SAND SPT SPT	-				DRILL:	HOLL	LOWS	STEN	AUGE	R				E122	01227-0	03	
BACKFILL TYPE BENTONTE PEAGRAVEL	ST. AL	LBERT, ALBE	RTA		944037	N; 217	752E					ELI	EVATI	ON: 657	7m		
SOIL DESCRIPTION 15	SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🖂	SPT		- 3	the same of			SHELBY T	UBE	CC	DRE		
15 16 644 17 18 10 29.1 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BACK	FILL TYPE	BENTONITE	PEA GRAVE	L III	SLOU	JGH	- B	GR	OUT	0	DRILL CUT	TINGS	∷ SA	ND		
15 16 644 17 18 10 29.1 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth (m)					SAMPLE TYPE	SPT (N)	OISTURE CONTENT	-	•		5	0 40 UNCON 0 100 POCKE	60 FINED (k) 150 T PEN. (k	80 Pa) ♦ 200 Pa) ▲	Slotted	
10 29.1 Fi-16 644 19 20 5AND - some silt, medium grained, saturated, compact, dark 15 28.3 6 83 20 21 SAND - some silt, medium grained, saturated, compact, dark 26 83 21 SAND - some silt, medium grained, saturated, compact, dark 28 8 83 22 23 88.1 - Clayvey, vaca of sand, saturated, compact, low plastic, dark 28.8 63 23 SAND - silty, fine grained, saturated, compact, dark grey 21 28.1 6 83 25 SAND - silty, fine grained, saturated, compact, dark grey 21 28.1 6 83 26 626 27 SAND - silty, fine grained, saturated, compact, dark grey 21 28.1 6 83 28 627 628 629 30 COMPLETION DEPTH 33.22r	- 15					-	-	2	20	40	60 80	10	0 200	300	400	111	642.0
10 28.1 F-1-6																	641.0_
SAND - some sit, medium grained, saturated, compact, dark 15 28.3	-					X	10	29.1									640.0_
SAND - some sit, medium grained, saturated, compact, dark 15 28.3	18		100	7		N	AV.										638.0_
SAND - some sit, medium grained, saturated, compact, dark 15 28.3	20		3.														637.0_
23 24 Sil.T - clayey, trace of sand, saturated, compact, low plastic, dark	3 I		silt, medium grained	saturated, compact, o	dark	X	15	28.3		•		•					636.0_
SiLT - clayey, trace of sand, saturated, compact, low plastic, dark grey 25 26 27 SAND-silty, fine grained, saturated, compact, dark grey 21 28.1	22																635.0.
25 26 27 SAND-silty, fine grained, saturated, compact, dark grey 21 28.1 . •	23																634.0_
27 SAND-silty, fine grained, saturated, compact, dark grey 21 28.1 28 629 30 EBA Engineering Consultants Ltd. REVIEWED BY: AFR COMPLETE: 07/10/30	24		race of sand, satura	led, compact, low plas	stic, dark	X	14	28.8									633.0_
28 SAND - silty, fine grained, saturated, compact, dark grey 21 28.1 630 28 628 29 628 EBA Engineering Consultants Ltd. LOGGED BY: DJK COMPLETION DEPTH: 33.22n	25																632.0_
28 29 30 LOGGED BY: DJK COMPLETION DEPTH: 33.22n REVIEWED BY: AFR COMPLETE: 07/10/30	26	A 100 575 E 200 555															631.0_
EBA Engineering Consultants Ltd. LOGGED BY: DJK COMPLETION DEPTH: 33.22n	_ 27	SAND - silty, fi	ne grained, saturate	d, compact, dark grey		X	21	28.1		•			ı				630.0.
EBA Engineering Consultants Ltd. LOGGED BY: DJK COMPLETION DEPTH: 33.22n	28																629.0
EBA Engineering Consultants Ltd. LOGGED BY: DJK COMPLETION DEPTH: 33.22r	29																628.0
EBA Engineering Consultants Ltd. REVIEWED BY: AFR COMPLETE: 07/10/30	30					X		170	0000	I I I	1 1 1		COM	N ETIC	N DEC	M. 22	627.0
eba LDA Engineening Consultants Ltd. Reviewed BT: AFK COMPLETE: 0/7/0/30	-	EDA	Enginos	ina Cono	ultar	oto	1 to	L					COM	DI ETE	07/10/2	n: 33	ZZIII
DRAWING NO: 12201227-03	ebo	LDA	Liigiileel	ing cons	uitai	il S	Liu	. 1				03	Page	2 of 2	01/10/3		

WRR	BYPASS - P	ROPOSED INTER	RCHANGES	ISL ENG	SINEE	RING	& LAN	ID SER	RVICES	LTD.	F	PROJEC	TNO	- BOR	EHOL	E NO.
McKE	NNEY AVEN	UE		DRILL:	HOLL	OW S	TEM A	UGER					E122	201227-	03	
ST. AL	LBERT, ALBI	ERTA		9440371	V; 217	52E					EL	EVATIO	N: 65	7m		
SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🛛	SPT		E	A-CA		∭ s	HELBY 1	TUBE [C	ORE		
BACK	FILL TYPE	BENTONITE	PEA GRAVE	L III	SLOU	GH		GRO	UT	Ø D	RILL CU	TTINGS	S	AND		
ST. AL	END OF BOF	DISTURBED	PEA GRAVE	9440371 RY 🔀	SAMPLE TYPE SYMPLE TYPE	GH (N) LdS	URE CONTENT		SING UT M.C.	Laborat	RILL CU	TTINGS OF THE PROPERTY OF T	N: 65 CONTRA SOURCE NETRA 60 INED (I 150 PEN. (I	7m ORE AND AND ATION (N) 80 kPa) ◆ 200 kPa) ▲		(w) uoite/vei 627.0 627.0 627.0 623.0 621.0 619.0 617.0
41								(616.0
42																615.0
43																614.0
44																613.0
0227	- Ordersandor	92.91 St. 10	a 2017/1	Ç11	37 0	05004	LO	GED	BY: DJ	K		COMPL	ETIO	N DEP	TH: 33	.22m
ecc	EBA	Engineer	ing Cons	ultan	ts l	_td.	RE	/IEWE	D BY: A		3		ETE:	07/10/3		

WRR	BYPASS - PF	ROPOSED INTER	RCHANGES	ISL ENG	SINE	ERING	&LA	ND	SERV	ICES	LTD.	ğ.	P	ROJE	CTN	O B	ORE	HOL	E NO.
FUTU	RE 137 AVEN	IUE CROSSING		DRILL:	HOL	LOW S	TEM	AU	GER						E12	22012	27-0	14	
ST. AL	BERT, ALBE	RTA		9418651	N; 23	150E					- 10		ELE	VAT	ION: 6	60.74	lm!		
SAMP	LE TYPE	DISTURBED	NO RECOVER	RY 🛛	SPT				A-CASIN			SHE	ELBY TO	JBE		CORE	C		
BACK	FILL TYPE	BENTONITE	PEA GRAVEL		SLOU	JGH			GROUT	8 -	6	DRI	LL CUT	TINGS		SAND			
					ш		N.												
Depth (m)		SC DESCR			SAMPLE TYPE	SPT (N)	MOISTURE CONTENT	PLA	_	M.C.	and a	OUID	50 ▲P	NCON 10 OCKE	0 60 NFINED 0 150 T PEN.	(kPa) (kPa) (kPa)	•	Slotted	Elevation (m)
0	CLAY (FILL) -	silty, trace of sand, n	noist,s tiff, medium plas	tic,		-	29.3	-	20 4	0	60	80	100	20	0 300	400	-	1	
-	dark gre	yish brown					CONC.			Щ.	ļ.ļ.	ļ., į	ii			.ii			
1						14	37 27.3	1								11		1	660.0_
				_	М		21.0											BE	-
	CLAY - silty, n	noist, stiff, medium pla	astic, dark greyish brow	vn :	Н		- 2	7			TT	1111	11		TT	11		31	659.0_
_ 2					Н			•••			·ŀ··ŀ··	}				****		11	
-	- siltier layer				X	12	31.5			ļ.,į.	ļļ	ļļ							
3	out a ju				H			Ĵ			LL.					i i		H	658.0_
					Ш													36	
					П	- 1	- 1	**	11111	77	11		***		77	11		3	657.0_
4	SILT - clayey, brown	sandy, damp, compa	ct, low plastic, dark gre	ryish	X	20	20.1		•								i	96	
5		d sand layers, fine gr	ained		П						ļ.,į.,	ļį		.ii			[]		
. 5					Н			1			H							N	656.0_
	- easier drilli	ng			Ш		. 1	1	1				111					96	
	- moist				X	19	23.6		•		•	!				4		31	655.0
- 6					П					į.	ļ	ļļ		1		.4.4		16	
					Ш						LL.							36	
7	3251V	10.10			Ц	- 1	- 11	***			11							31	654.0_
- "	- rapid dilata	ncy, saturated			M	14	28.1	***		T	Ħ	min	A 8	111	T	TT	T	16	
- 1					П				-		÷÷-	ii				+++	d-	36	653.0
8_					Ш						i.i.,	ļ., ļ.,				.1.1		16	-
days.								1			11		1 1	11	11			16	6520
					X	12	28.2	1	•				4		11			枢	6520_
0 hrs. ▲								*			i i i	e in	111	rirri	T	11	1	1	Y
0 10					Н						ļ								651.0
10										į.	LL.	ļį				1.1		Ē	051.0.
					A	11	31.2	****	•				A		11	1 1		Ē	-
													11	1				1	650.0_
_ 10					П			*			1			-1			-j	Ē	
- 1	SAND - trace	of silt, fine to medium	grained, saturated, loo	se to	M		20.4	٠.;		j.	ļ	i		.j;			j		040.0
12	compact	, grey		2000	А	10	28.1				LL.				11	11			649.0_
								1										Ш	1
					Н			ï					***	1					648.0
13					A	12	24.4				ļ., Ļ.,								
13					A		2.109				jl	ļļ	i.			1.1			
14											11								647.0_
62								1											=
	- compact, o	cal deposits			V	14	26.6	***			1				***	ŤŤ			646.0
15					M			100	SED BY	· D I	1 1			2014	PLETI	OND	EDT	H: 21	
eoo	FRA	Fnaineer	ing Consu	ıltan	ts	I td	RI		EWED						PLETE				1.22111
600			g Jones	artar i			DF		VING N			27-04			1 of 3		and the same		

WRR	BYPASS - P	ROPOSED INTER	RCHANGES	ISL ENG	SINEE	RING	& LA	ND SE	RVICES	LTD.	PRO	JEC	T NO BORE	EHOL	E NO.
FUTUR	RE 137 AVE	NUE CROSSING		DRILL:	HOLL	OW ST	ГЕМ	AUGE	R				E12201227-0)4	
ST. AL	BERT, ALBI	ERTA		941865N		50E							N: 660.74m		
_	LE TYPE	DISTURBED	NO RECOVE		SPT		E		ASING	10000	ELBY TUBE		CORE		
BACK	FILL TYPE	BENTONITE	PEA GRAVEL		SLOUG			GR	OUT	DR DR	ILL CUTTIN	IGS -	SAND		
Depth (m)		SO DESCRI			SAMPLE TYPE	SPT (N)	MOISTURE CONTENT	PLASTI 20	•	LIQUID	20 ◆ UNC 50 ▲ POC	40 CONF 100 KET	ENETRATION (N) ■ 80 80 INED (kPa) ◆ 150 200 PEN. (kPa) ▲ 300 400	Slotted	Elevation (m)
15 16 17 18 19	- fine graine	ed, dense to compact			X	27	25								644.0 644.0 642.0 641.0
21	- silty, coal	tanneile			X	28 2	3.3								640.0_
23	3.1,				X	36 2	5.2								638.0
25															635.0
_ 27	- clean, trac 0.5 hou	e of silt, very dense, (h r, sand locked)	nollow stem not advan	ced for		90 2	0.8	•							633.0_
2000	upproduce	ASARCANI.					1	ŤŤ	!::†::!::	hhhh					631.0
30	- dense to d	empact Engineer	ing Cons	ultan	ts L	.td.	RE	VIEW	BY: DJE ED BY: A G NO: 12		CC		ETION DEPT ETE: 07/10/3 of 3		.22m

WRR	BYPASS - P	ROPOSED INTER	RCHANGES	ISL ENG	SINEER	ING 8	k LA	ND SERVI	CES LTD.		PROJE	CT NO BOR	EHOL	E NO.
-	THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER.	NUE CROSSING		-	-		EM	AUGER				E12201227-	04	
-	LBERT, ALB			941865N	A section with the	DE .					The second second	ON: 660.74m		
_	LE TYPE	DISTURBED	NO RECOVER		SPT			A-CASIN		Andread	BY TUBE	CORE		
BACK	FILL TYPE	BENTONITE	PEA GRAVEL		SLOUGH			GROUT	- 8	DRILL	CUTTINGS	SAND		
S Depth (m)		SO DESCRI			SAMPLE TYPE		MOISTURE CONTENT	PLASTIC 1	•	2UID	20 40 ♦ UNCON 50 100 ▲ POCKET	ENETRATION (N) I 60 80 FINED (kPa) ◆ 150 200 PEN (kPa) ▲ 300 400	Slotted	
31 32 33		rained, compact			26	3 23	1.6							629.0_
34	slough - 9,1 water - trace - 8,20	REHOLE (33.22 metre 4 metres at 0 hrs. e at 0 hrs. metres at 11 days installed to 11.58 metre												627.0_
_ 35														625.0_
_ 37														624.0_
_ 38														623.0_
_ 39														621.0_
_ 41														620.0_
42														619.0
43														618.0
. 44														616.0
45			1 22/11		10 40			GGED BY:				LETION DEPT		100000
ebo	EBA	Engineer	ing Consu	iltan	ts Li	d.		VIEWED B		27-04	COMP Page 3	LETE: 07/10/3	1	

EBA Engineering

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

Tested in accordance with ASTM D422 unless otherwise noted.

The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

EBA Engineering

Tested in accordance with ASTM D422 unless otherwise noted.

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

The testing services reported herein have been performed by an ERA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

Appendix F Environmental Report

An Evaluation of the Environmental Assessment, Approval and Permitting Implications of Upgrading Ray Gibbon Drive to Provincial Roadway Status

Final Report

Prepared for:

100

ISL Engineering and Land Services Ltd. Edmonton, Alberta

Prepared by:

Spencer Environmental Management Services Ltd. Edmonton, Alberta

Project Number EP-369

JUNE 2008

Table of Contents

1.0	INTRODUCTION
1.1 1.2 1.3	Background
2.0	METHODS4
3.0	REVISED PROJECT FACILITIES AND PHYSICAL FOOTPRINT 6
4.0	NEW FACILITIES AND TYPES OF ENVIRONMENTAL IMPACTS 10
5.0	WRR-IDENTIFIED IMPACTS THAT REQUIRE RE-EVALUATION 12
6.0 PERM	INVENTORY OF WRR AND PROVINCIAL ROAD ENVIRONMENTAL IITS
7.0 COUI	FEDERAL ENVIRONMENTAL PERMIT REQUIREMENTS THAT D TRIGGER CEAA
8.0 WAY	OTHER AVENUES FOR ASSESSING THE UPGRADE PROJECT BY OF CEAACT
9.0 FACII	NEW ENVIRONMENTAL INFORMATION NEEDS TO SUPPORT LITY-SPECIFIC ENVIRONMENTAL PERMIT APPLICATIONS 23
10.0 ENVI	ENVIRONMENTAL INFORMATION NEEDS TO SUPPORT NEW RONMENTAL REVIEW PROCESSES
11.0	SUMMARY
11.1 11.2 11.3 11.4 11.5 11.6	Potential for a new CEAAct Environmental Review 30 Accuracy of WRR Impact Predictions 30 New Information Needs 31 Public Consultation 32 Recommendations 32
12.0	REFERENCES
12,1	List of Figures
Dia.	
rigure	2-1 Conceptual Plan of Proposed Provincial Road

List of Tables

Table 3-1	Comparison of C	haracteristics	for Ultimate F	Ray (Gibbon Dri	ve (Constructed
and D	esign only Phases)	with the Proj	posed Provincia	al Ro	ad	8
Table 4-1 I	Provincial Road Cl	naracteristics	and Preliminary	List	of Potentia	al Impacts 10
Table 5-1	Rationale for Re-e	valuating Cer	tain Impact Pre	dicti	ons	13
Table 6-1	Environmental Per	mits for WRI	R and for Provin	ncial	Road	18
Table 7-1	CEAAct Environm	nental Review				Provincial Road
	Environmental		Requirements	for	Obtaining	Environmental
Permi	ts to construct the	Provincial Up	grade Project			23

1.0 INTRODUCTION

1.1 Background

In 2004, Spencer Environmental, under contract to ISL Engineering and Lands, completed an Environmental Impact Assessment (EIA) pursuant to the Canadian Environmental Assessment Act (CEAAct) for a segment of the proposed West Regional Roadway (WRR) (also now officially named Ray Gibbon Drive). That project was an initiative of the City of St. Albert. The entire WRR was planned to be constructed in three geographic phases. Phase 1, which contained the segment for which the CEAAct EIA was prepared, extended north from 137 Avenue to approximately McKenney Avenue. Phase 2 extends from McKenney Avenue to Giroux Road. Detailed engineering design, including environmental assessment activities in support of environmental permitting, have been completed but construction has not commenced. Phase 3 extends from Giroux Road north to Villeneuve Road. Some environmental assessment work in support of environmental permitting has been undertaken but that work is incomplete. Detailed engineering design for Phase 3 is incomplete.

Within the geographic phases of the project, work is scheduled to be undertaken in temporal stages with additional lanes and bridge decks over the Sturgeon River to be added according to increasing traffic volumes. Stage 1 of Phase 1 included construction of one bridge deck over the Sturgeon River. Vehicle travel lanes were limited to one in each direction for Stage 1 of Phase 1. Stage 2 will include the addition of another lane in each direction and placement of another bridge deck over piers placed in the Sturgeon River as part of Stage 1.

The CEAAct EIA focused on Stage 2 of a segment of Phase One between 137 Avenue and the existing CN Rail Line (Sangudo Subdivision), located 800 m north of Meadowview Drive. The CEAAct review examined the Sturgeon river crossing and the rail crossing. The ultimate roadway design for the project was a four lane expressway constructed within a corridor of sufficient width to eventually accommodate a six lane expressway. Stage 2 would involve 2 lanes in each direction and two bridges over the Sturgeon River. The speed limit for that expressway was proposed as and currently is 70 kph. A Right-of-Way (ROW) of 58 m was assessed, featuring a 1 to 1.5m high berm planned within the Sturgeon River Valley and parks areas. Those perimeter berms were for purposes of noise attenuation and visual screening.

At the Sturgeon River, bridge piers were installed to accommodate two separate bridge decks but only the downstream deck was installed as part of the initial WRR project. The upstream deck was to be installed when traffic volumes so justified. The Stage One bridge incorporated a 3 m wide pedestrian pathway. Stage Two would include a 4 m wide pedway. West and east of the bridge, a 3 m wide pathway was planned for either within the 58 m wide right of way or immediately outside of it and the perimeter berms.

Department of Fisheries and Oceans Canada (DFO) was the Responsible Authority (RA) for the project review under *CEAAct*. The City of St. Albert then completed an EIA for the project that addressed several environmental subject areas and issues of relevance to

federal government legislated mandates. DFO issued Terms-of-Reference (TOR), identifying specific information to be supplied in support of DFO's *CEAAct* Environmental Screening Report. The City of St. Albert also determined to supply other environmental impact information in their EIA that addressed issues outside of the federal government's interest but that were of interest to public interest stakeholders. Some of those issues related to lands outside of the *CEAAct* EIA study area are specified in the TOR.

The province of Alberta participated in the EIA process in accordance with <u>Appendix 3 of the Canada-Alberta Agreement for Environmental Assessment Cooperation</u> (Appendix A-2). That past involvement with the project is an important aspect requiring consideration for any future environmental assessment activities that could occur.

City of St. Albert's EIA for the WRR project was accepted as satisfactory for the federal government's (DFO in this case) information requirements and the project proceeded to the environmental permitting stage. City of St. Albert applied for specific provincial and federal environmental permits to construct the project. All necessary permits and approvals were secured and construction of the project commenced in autumn of 2004.

In 2007, City of St. Albert officially renamed WRR as Ray Gibbon Drive and opened Phase 1 in October of that year. Also in autumn of 2007, the City of St. Albert and the provincial government [Alberta Infrastructure and Transportation (INFTRA)] reached an understanding whereby the Province of Alberta would investigate the viability of incorporating Ray Gibbon Drive with the provincial highway network - specifically as part of Highway 2. In order for Ray Gibbon Drive to become part of that provincial highway network, however, certain provincial design standards that Ray Gibbon Drive does not currently meet must be achieved.

In autumn of 2007, City of St. Albert retained ISL Engineering and Land Services to review the current Ray Gibbon Drive design and to recommend the facilities and a specific design needed for that roadway (referred to as "provincial road" in the remainder of this report) to achieve the provincial standard. In turn, ISL retained Spencer Environmental to undertake an analysis of the implications of the changed design for future environmental reviews and permitting. This document does not address the matter of decommissioned landfills and hydrocarbon well-sites in the vicinity of Villeneuve Road. That is because it is known to Spencer Environmental that ISL is already working on those subjects.

Spencer Environmental's mandate for the exercise was not to prepare a new EIA or update the existing EIA document.

1.2 Objectives

In December of 2007, Spencer Environmental submitted a proposal to ISL for an analysis of what is termed "a provincial road" with the following objectives:

- Review the revised project description to determine how it differs from the WRR project that was assessed in the 2004 EIA.
- On a broad level, undertake a spatial analysis of the revised project to determine any new areas of potential impacts and any new types of environmental features that could generate impacts not already covered in the original EIA. On the basis of the above, determine if any environmental permits (federal or provincial) are required or any environmental review processes triggered.
- Considering the project revisions, review the existing EIA document to determine which of the impact predictions of that EIA would no longer be valid. That review would extend to subject matter not covered by environmental permitting but pertaining to important issues in the original EIA.
- Review existing environmental permits for the project to determine which of those may require alteration in the context of a revised project description.
- Determine any new environmental information needs to support environmental permits applications or amendments to existing applications.
- Determine what options, other than by way of environmental permit applications, the federal government may have for initiating a reassessment of the project pursuant to CEAAct.
- Make recommendations concerning future environmental assessment and planning for the provincial road.

1.3 Report Organization

This report comprises 11 Chapters. Chapter 1 provides background to the assignment and lists the assignment objectives. Chapter 2 describes the methods used to meet each of the objectives. The remaining chapters are sequentially organized by assignment objective. Chapter 11 summarizes the findings and recommendations and represents, in effect, a plan for future action regarding environmental reviews and permitting. Chapter 12 is references.

Extensive use of tables is employed to facilitate presentation of information.

2.0 METHODS

In order to meet the exercise objectives, Spencer Environmental undertook the following tasks:

- We reviewed concept plans for the proposed provincial road. Those concept plans showed the proposed roadway alignment, locations of proposed interchanges, right-of-way width, locations of new stormwater management (SWM) facilities, locations of some pedestrian infrastructure, and locations of any supporting service roads, all at a conceptual level (Figure 2-1).
- We interviewed ISL engineering personnel to gain an understanding of the project components.
- We compared the provincial road design and specific features with the existing design and features.
- We contacted federal government Canadian Environmental Assessment Agency (CEAA) representatives for an opinion about whether the WRR environmental review could be reopened considering the upgraded design. We sought an opinion irrespective of anticipated applications for new federal environmental permits.
- We reviewed the proposed design for the provincial road in order to determine, on the basis of our experience, which provincial and federal environmental permits would be required. Based on the environmental permits required, we assessed the possibility that applying for them would trigger a CEAAct review.
- Based on the new environmental permits that would be required to construct the provincial road, we employed our knowledge of the permitting systems to identify the types of environmental information needed to support the permit applications.
- We reviewed the WRR EIA in order to identify all of the potential impacts predicted for that project, including those not covered by environmental permitting. Our review included the potential impact ratings. Based on our knowledge of the constructed project, the project area and the proposed provincial road design, we identified those impact predictions that may no longer be valid and that should be re-assessed. Based on our professional judgment, we identified potential impacts from the WRR EIA that were resolved in that previous review and no longer warranted assessment for the provincial road.
- We reviewed the WRR EIA to determine what environmental information had been obtained and generated for that exercise and to support the WRR permit applications. Based on probable permit requirements for the upgraded project and the types of impact predictions that we identified as requiring reassessment, we determined if the existing environmental data were sufficient for those objectives or if new data would need to be generated.

Figure 2-1. Conceptual Plan of Proposed Provincial Road

3.0 REVISED PROJECT FACILITIES AND PHYSICAL FOOTPRINT

The following are the main characteristics of the proposed provincial road as shown in Figure 2-1:

- The right of-way (ROW) will accommodate up to eight lanes with a typical width of 78 m, extending in some areas up to 100 m. At locations of proposed interchanges, the ROW would be wider. No berms demarking the ROW limits are planned.
- Grade-separated roadway interchanges are proposed for the locations of:
 - o 137 Avenue,
 - o McKenney Avenue,
 - o Giroux Road, and
 - Villeneuve Road.
- Piers that have been previously installed for a WRR bridge deck at the Sturgeon River Crossing would have a bridge deck installed for new lanes to accommodate south bound vehicle traffic. Three lanes in either direction would be accommodated on two bridge decks.
- Primary pedestrian accommodation along the proposed provincial upgrade would be by way of 3 m wide pedways located outside of the ROW. The exceptions to that would be at interchanges and over the Sturgeon River.
- Separate pedestrian ways (pedways), typically about 2.5 m width, would be constructed at the interchanges. Specifically, those pedways would be located on:
 - o the north side of the 137 Avenue interchange,
 - o the south side of the interchange at McKenney Avenue,
 - o the south side of the Giroux Road interchange, and
 - o the south side of the Villeneuve Road interchange.
- At the Sturgeon River, a bridge dedicated to pedestrian use would be constructed. A dedicated pedestrian bridge is required because the bridge decks on the WRR bridges are insufficiently wide to accommodate both vehicular and pedestrian traffic according to provincial standards.
- North of 137 Avenue and south of the Riel Wetland, an elevated pathway is being considered for over the roadway to link lands east of the road with Lois Hole Centennial Provincial Park.
- To accommodate anticipated increased stormwater from the larger roadway footprint, it is possible that Stormwater Management Facilities (SWMF) constructed as part of the WRR project would require expansion to provide

increased storage capacities. That would include the Riel Pond and Wetland (an SWMF) and the facility immediately north of the Sturgeon River and, potentially, the constructed wetland in the vicinity of the McKenney Avenue interchange.

- A new SWMF would be constructed in the southwest quadrant of the interchange proposed for Villeneuve Road. That SWMF would drain into Carrot Creek to the west by way of an armored ditch and outfall. The bottom of the Carrot Creek channel would be armored at the discharge location. The Villeneuve Road SWMF was required as a component of current Phase 3 of Ray Gibbon Drive. The capacity of that SWMF facility may have to be increased relative to the original need for Phase 3 to accommodate additional surface run-off from the larger roadway footprint.
- At the location of the already constructed at-grade CN Rail crossing north of McKenney Avenue, a new grade-separated interchange with the rail line is proposed. Further, the location of the crossing would be adjusted westward.
- A new service road would be constructed in the northeast quadrant of the Villeneuve Road interchange.
- The speed limit for the new roadway would be increased to 100 kph from the present Ray Gibbon Drive limit of 70 kph.
- Traffic volumes for the provincial road would be greater than those projected for the ultimate Ray Gibbon Drive.

Table 3.1 compares the existing Ray Gibbon Drive project with the proposed provincial Highway 2 Upgrade.

Table 3-1 Comparison of Characteristics for Ultimate Ray Gibbon Drive (Constructed and Design only Phases) with the Proposed Provincial Road

	Ray Gibbon Drive	Provincial Road
Characteristics		
Right-of-Way Width	• 58 m	 78-100 m, wider at interchanges
Ultimate Number of Lanes	• 6	• 8
Acoustical/Landscape berms present or planned	Yes, in Sturgeon River Valley/Parks areas	From south of McKenny Ave to Villeneuve Rd
Roadway Interchange Types and Locations	 137 Ave at-grade McKenney Ave at-grade Giroux Rd at-grade Villeneuve Rd at-grade 	 137 Avenue (grade-separated) McKenney Avenue (grade-separated) Giroux Road (grade-separated) Villeneuve Road (grade-separated)
Number of River Crossing Structures/Types	Two bridges decks with 4 vehicle lanes over Sturgeon River with pedestrian accommodation on downstream deck	Two vehicular bridge decks over Sturgeon River
Pedestrian Walkways/Characteristics/ Locations	3 m wide pedways within 58 m ROW Dedicated 3 m wide pedway on downstream bridge deck and 4 m wide on upstream deck	3 m wide pedways outside of ROW 2.5 m pedways at interchanges Dedicated pedestrian bridge at Sturgeon River
Pedestrian Road Crossing Structures	None constructed	One elevated pedway over road south of Riel Wetland

	Ray Gibbon Drive	Provincial Road
Characteristics		
SWMF	 Riel Pond and Wetland North Side of Sturgeon River South of McKenney Avenue Future facility near Villeneuve Road 	 Riel Pond and Wetland possibly enlarged North side of Sturgeon River possibly enlarged South of McKenney Avenue possibly enlarged New facility at Villeneuve Road
Rail Crossings/Types	One at-grade north of Meadowview Drive	One grade- separated north of Meadowview Drive
Service Roads	• None	One at Villeneuve Road
Speed Limits	• 70 kph	• 100 kph

4.0 NEW FACILITIES AND TYPES OF ENVIRONMENTAL IMPACTS

Table 4-1 shows the provincial road characteristics and, for each of those characteristics, a very preliminary list of the types of potential impacts that might occur as a result of construction and operation. This preliminary list is important to identifying what types of existing and new environmental data may be required to assess those of impacts.

Table 4-1 Provincial Road Characteristics and Preliminary List of Potential Impacts

Upgraded Roadway Characteristics	Types of Potential Impacts
Increased ROW Width (20m)	 Surface erosion of disturbed areas Infilling of Sturgeon River flood plain reducing flood storage Siltation in vicinity of already constructed compensatory wetlands (Riel Wetland and SWMF south of McKenney Avenue Increased load on abandoned landfill, resulting in increased leachate migration Disturbance to compensatory and natural wetlands Surface disturbance to areas of natural vegetation, wildlife habitat, and designated St. Albert Natural Areas Increased vehicle/wildlife collisions Additional erosion associated with increased surface disturbance and longer side slopes Adverse impacts to historical resources Adverse impacts to outdoor recreation playing fields
Increased Number of Lanes (2) (4 lanes were considered for WRR EIA)	 Increased traffic volumes, resulting in greater traffic noise Increased adverse impacts to wildlife movement Adverse impacts associated with re-suspending contaminated bottom materials in Riel Pond and Riel Wetland
Absence of Acoustical/Landscape Berms	Increased adverse impacts on wildlife and land use associated with traffic noise
Change in the number, location and design of interchanges (now grade-separated)	 By way of the larger footprint, additional disturbance to: natural vegetation communities, wetlands, wildlife and wildlife habitat, and designated St. Albert Natural Areas Increase in severity of impacts associated with increased noise levels emanating from elevated facilities

Upgraded Roadway Characteristics	Types of Potential Impacts
Additional river crossing structure dedicated to pedestrian use	 Adverse impacts to water quality Adverse impacts to fish and fish habitat Adverse impacts to wildlife corridors Adverse impacts to watercourse navigation
No segregated pedestrian trail within ROW	Safety risk to outdoor recreationists
Elevated pedestrian crossing over roadway at Riel Wetland vicinity	Safer cross roadway access for outdoor recreationists than that provided by the one originally planned but not constructed
Potential enlargement of WRR SWMFs and construction of a new SWMF to accommodate additional stormwater volumes	 Adverse impacts to Riel Wetland and to Riel Marsh Loss of portions of WRR compensatory wetland habitat constructed at Riel Wetland south of McKenney Avenue Adverse impacts to natural vegetation communities, wildlife habitat and designated St. Albert Natural Areas
Planned at-grade rail line crossing moved westward and constructed as a grade- separated feature	 Safer roadway environment for motoring public Decreased hazardous materials spills Increased adverse impacts associated with increased traffic noise from elevated location
Service road at Villeneuve Road interchange location (Outside geographic scope of WRR EIA)	Adverse impacts to natural vegetation, wildlife habitat and designated St. Albert Natural Areas, including wetlands
Speed limit increased from 70 kph to 110 kph	 Increased adverse impacts of all types associated with increased noise levels Increased adverse impacts to wildlife movement
Increased traffic volumes and changed vehicle composition	 Increased adverse impacts associated with increased noise levels Increased adverse impacts associated with reduced air quality Increased adverse impacts to wildlife movement Increased adverse impacts associated with hazardous materials spills during roadway operation

5.0 WRR-IDENTIFIED IMPACTS THAT REQUIRE RE-EVALUATION

Our review of the WRR EIA for impact predictions that may no longer be valid for the provincial road led to the identification of some new potential impacts. This chapter of the report addresses both of those scenarios.

The WRR EIA generated acoustical information to support analyses of that project's potential impacts to wildlife and outdoor recreation pursuits. While none of the environmental permits issued for construction of the project referred specifically to roadway operational noise, an in-depth analysis of the effects of noise on those subjects was of vital concern to government and non-government stakeholders. The proposed provincial road project includes certain components that may make the acoustical impact-related information for WRR invalid. That is because the provincial road as currently presented:

- · has no berming planned for it while portions of the WRR did,
- will include eight lanes at ultimate development as opposed to six lanes for WRR,
- will convey a larger volume of traffic than proposed for WRR,
- · will include grade-separated interchanges that could alter acoustics, and
- · will have a higher speed limit with potential to alter acoustics.

We recommend a re-evaluation of the impacts of operational roadway noise on wildlife and outdoor recreation. That re-evaluation should use the same methods and receptors as that used for the WRR. Other receptors may need to be added. This is especially the case if the potential noise impacts to residential areas are of interest to INFTRA. We recommend that a re-evaluation be undertaken, despite the possibility that RAs do not specifically ask for it, in support of a review process or environmental permit applications. The results will be critical for developing mitigation strategies. The potential impacts of noise were of important interest to stakeholders for the WRR CEAAct EIA and there are no obvious reasons why environmental stakeholders would not pursue this issue again with or without a formal CEAAct environmental review.

With respect to new impacts, the WRR EIA examined the potential for adverse impacts on wildlife movement corridors and recommended certain mitigation strategies. Considering the larger footprint of the proposed provincial road, the increased traffic volumes and the higher speed limits, the conclusions reached in the WRR EIA may no longer apply. Those wildlife movement impacts need to be reassessed and, if required, new mitigation strategies employed.

Since the WRR was completed, City of St. Albert has annexed new lands from Sturgeon County. Recently, the City of St. Albert's inventory of Natural Areas (Spencer Environmental 1999) was updated (Stantec, in preparation) to include any Natural Areas within those annexed lands. Portions of the provincial road would overlap the annexed

lands. We recommend that any evaluation of the proposed roadway include examining potential impacts to Natural Areas in newly annexed lands. Some of the Natural Areas could be wetlands pursuant to the interim Alberta Wetland Policy.

Also with respect to new potential impacts, the larger footprint of the provincial road ROW and interchanges will have the potential to impact more natural vegetation and wildlife habitats than the WRR. Some of those areas will not have been included within the environmental inventories conducted for WRR or other recent environmental planning initiatives. We recommend that those areas of expanded footprint, where not covered by WRR investigations be assessed for impacts on vegetation communities and wildlife populations.

In addition to the above-described general impact types, several issue-specific or subject-specific impacts identified in the WRR EIA warrant re-evaluation. Table 5-1 shows individual impact predictions addressed in the WRR EIA that may require re-evaluation. The original descriptions of impact severity have been sourced from the WRR EIA. A rationale is provided for each of the impact predictions recommended for re-evaluation. In the case of new potential impacts, these are identified as such in Table 5-1.

Table 5-1 Rationale for Re-evaluating Certain Impact Predictions

	Predicted Impact Requiring Re-evaluation	L	Rationale
Su	rface Water Quality	T	
•	Negligible to adverse, minor, short- term and predictable impacts to surface water quality in the unlikely event of a hazardous materials spill during roadway operation	•	The increased traffic volumes and speeds may increase the potential for a hazardous materials spill
Ve	getation including Wetlands		
•	Adverse, minor, permanent and predictable impacts to upland plant communities (new impact)	•	The increased footprint of the project increases the potential for directly disturbing upland native plant communities
•	Negligible to adverse, minor, permanent and predictable impacts to wetlands (new impact)	•	The increased footprint of the project increases the potential for directly disturbing wetland communities

	Predicted Impact Requiring Re-evaluation		Rationale
•	Negligible hydrogeological impacts to the spruce woodland	٠	Considering the public sensitivity concerning this feature and the increased footprint of the road, this potential impact warrants re-valuation
•	Adverse, minor to major, permanent and predictable impacts to sensitive species of vascular plants and bryophytes (new impact)	•	The increased footprint of the roadway may affect previously un-inventoried plant habitats
W	ildlife and Wildlife Habitat		
•	Adverse, minor, permanent and predictable impact to deciduous woodland habitat (new impact)	•	The larger footprint of the project may impact more of this habitat type
•	Negligible to adverse, minor, permanent and predictable impact to wetlands and riparian habitat (new impact)	•	The larger footprint of the project may impact more of this habitat type
•	Negligible to adverse, minor, permanent and uncertain impacts to ungulates from collisions with vehicles	•	Considering the larger project footprint, greater traffic volumes and higher roadway speeds, this impact prediction warrants revisiting
•	Adverse, minor to major long term and predictable impacts to amphibians, migratory songbirds from roadway noise	•	Considering the potential for increased noise levels, this impact prediction warrants revisiting
•	Adverse, minor to major, permanent, uncertain impact to wildlife movement corridor in north floodplain	•	Considering the wider footprint of the roadway, greater traffic volumes, higher roadway speeds, and the fact that installed culverts intended to pass small animals would be longer, this impact prediction warrants revisiting

	Predicted Impact Requiring Re-evaluation		Rationale
•	Adverse, minor, permanent, predictable adverse impact to wildlife movement along south river edge	•	Considering the addition of another bridge structure and the new landscaping in Riel Park that will provide some wildlife habitat, this impact prediction warrants revisiting
•	Adverse, major, permanent, uncertain impact to bird use of the spruce woodland as a result of roadway noise	•	Considering the increased traffic volumes associated with the provincial road, the predicted impacts warrant reconsidering
•	Negligible to adverse, minor to major impact to avifauna using Big Lake from roadway noise	8.0	Considering the increased traffic volumes, altered roadway configuration and increased speed limit, this predicted impact warrants reconsideration
• 1	Negligible to adverse, minor, permanent uncertain impacts to some species at Riel Pond resulting from possible noise level increase	•	Considering the increased traffic volumes and altered roadway configuration, this predicted impact warrants reconsideration
•	Adverse, minor to major permanent uncertain impacts to avifauna using Riel Marsh as a result of increased noise levels	•	Considering the increased traffic volumes and new roadway configuration, this predicted impact warrants reconsideration
Fi	sh and Aquatic Resources		
•	Potential loss of fish habitat resulting from the new pedestrian bridge (this impact assumes some instream work occurs)	•	Pedestrian bridge may include some instream work
La	and Use		
•	Adverse, minor, short term predictable impact from loss of 22.4 ha of agricultural lands to roadway construction (new impact)	•	Considering the expanded roadway footprint, this impact prediction should be re-evaluated

	Predicted Impact Requiring Re-evaluation		Rationale
•	Negligible impact from loss of a portion of soccer practice field to ROW footprint (new impact)	•	Considering the increased footprint, the extent of impact on recreational playing field in this vicinity should be revisited
•	Negligible impact to soccer and rugby players and referees from roadway noise	•	With the increased traffic volumes and roadway configuration, this impact prediction warrants revisiting
	Negligible to adverse, minor, permanent and predictable impact to the quality of nature appreciation activities at picnic shelter at intermediate traffic levels	•	Considering the increased traffic volumes and altered roadway design, this predicted impact warrants reconsidering
	Adverse, major, permanent, predictable impact to quality of nature appreciation activities at north shore of Big Lake at intermediate traffic levels	•	Considering the increased traffic volumes and altered roadway design, this impact prediction should be re-evaluated
	Adverse, minor to major, permanent, predictable impact to quality of nature appreciation activities near viewing platform/Riel Marsh owing to vehicle noise, at ultimate development	•	Considering the increased traffic volumes and altered roadway design, this predicted impact warrants re-evaluation
	Adverse, major, permanent, uncertain impact to nature appreciation activities near the Spruce Woodland owing to road noise at short-term traffic levels	•	Considering the increased traffic volumes and altered roadway design, this predicted impact warrants re-evaluation

6.0 INVENTORY OF WRR AND PROVINCIAL ROAD ENVIRONMENTAL PERMITS

Table 6-1 shows the facilities and features that were required to construct WRR and the facilities and WRR facilities and features that will need updating to construct the provincial road. New features for the provincial road are also shown in this table. For each of the facilities and features mentioned, a description of the relevant federal and provincial environmental permits is provided.

	X	

Table 6-1 Environmental Permits for WRR and for Provincial Road

				WRR		Provin	Provincial Road
Facility a	Facility and Location		Federal Approvals	Provincial Approvals	ıls	Federal Approvals	Provincial Approvals
WRR	Provincial Road						
Construct Riel Wetland SWMF and outfall into Sturgeon River	Enlarge Riel Wetland			Registration pursuant to Alberta Environmental Protection and Enhancement Act (AEPEA) Notification under Code of Practice for Stormwater Outfalls under Alberta Water Act	ant xr ls sr	-	Amend existing registration pursuant to AEPEA
Sturgeon River Bridge Crossing	Sturgeon River Bridge 2 nd Deck	•	Authorization to install bridge piers and abutments pursuant to Fisheries Act Approval pursuant to Navigable Waters Protection Act (NWPA) to construct bridge piers, abutments and deck	Notification under Code of Practice for Watercourse Crossings pursuant to Alberta Water Act License of Occupation (LOC) for the bridge abutments and piers pursuant to the Alberta Lands Act	or troo	Application under NWPA to add additional bridge deck	

			WRR	Provin	Provincial Road
Facility a	Facility and Location	Federal Approvals	Provincial Approvals	Federal Approvals	Provincial Approvals
	New pedestrian- dedicated bridge at Sturgeon River			Authorization to construct piers (if required) and abutments in Sturgeon River pursuant to federal Fisheries Act Approval to construct bridge pursuant to NWPA.	LOC for bridge abutments and piers (if required) under Alberta Lands Act Notification under Code of Practice for Water Course Crossings
Fish Habitat Compensation Area			LOC pursuant to Alberta Lands Act		
SWMF on north side of Sturgeon River including outfall into Sturgeon River	Enlarge SWMF on north side of river	Letter of advice pursuant to the federal Fisheries Act	Registration of the facility pursuant to AEPEA Notification under Code of Practice for Outfalls LOC pursuant to Alberta Public Lands Act		Amendment to registration under AEPEA Amendment to LOC
SWMF at McKenney Avenue	Enlarge SWMF at McKenney Avenue		Registration of the facility pursuant to AEPEA		Amendment to registration under AEPEA

pu	Facility and Location	V Federal Approvals	WRR Provincial Approvals	Provinci Federal Approvals	Provincial Road ovals Provincial Approvals
PZZG	Grade-separated rail crossing at McKenney Avenue	Canadian Transportation Authority (CTA) Approval	X	CTA approval may require a new EA	
0 8 0 8 0	Construct SWMF with outfall to Carrot Creek and armour Carrot Creek channel			Authorization or Letter of Advice pursuant to federal Fisheries Act for installing SWMF outfall and channel armouring in Carrot Creek	 LOC under Alberta Lands Act for outfall structure into Carrot Creek bank Registration of SWMF and drainage plan pursuant to AEPEA
				 Approval pursuant to NWPA for outfall and channel armouring 	
R. W.	Potential Removal of wetlands				Approval pursuant to Alberta Water Act with reference to Interim Alberta Wetland Policy
P. P. P. R. P. P. P. R. P. P. P. R. P.	Potential removal of City of St. Albert designated Natural Areas				City of St. Albert environmental assessment may be required
O LG II W	Overall drainage plan for interchanges and widened footprint				Notification and subsequent registration under AEPEA

7.0 FEDERAL ENVIRONMENTAL PERMIT REQUIREMENTS THAT COULD TRIGGER CEAA

Table 7-1 shows each of the facilities for the provincial road that will or may require federal environmental permits. Such permit applications could trigger an environmental review of the provincial road project or certain components of it pursuant to *CEAAct*. Such a review's scope cannot be completely known now but the study area could be larger for the provincial road. That is because the provincial road project would require environmental permits for two watercourses while WRR only required federal approvals for Sturgeon River facilities.

Table 7-1 CEAAct Environmental Review Permit Triggers for Proposed Provincial Road

	Project Feature or Facility	Federal Environmental Permit Potentially Triggering Review
•	Second bridge deck on already placed piers Sturgeon River Bridge	• Approval pursuant to <i>NWPA</i> .
•	New stand alone pedestrian bridge over Sturgeon River	 Approval pursuant to NWPA Authorization pursuant to federal Fisheries Act
•	Construction of a grade-separated railway crossing over the roadway on the north side of Sturgeon River	Approval from CTA
•	Construction of a stormwater outlet and placement of creek armouring in Carrot Creek on the west side of Villeneuve Road intersection	 Authorization pursuant to federal <i>Fisheries Act</i> Approval pursuant to <i>NWPA</i>

8.0 OTHER AVENUES FOR ASSESSING THE UPGRADE PROJECT BY WAY OF CEAACT

The Edmonton office of the Canadian Environmental Assessment Agency (CEAA) was contacted for advice on this subject. Personnel in that Regional CEAA office are familiar with the original WRR Project. The contact was made in order to obtain an opinion concerning other triggers or factors outside of permitting requirements that might initiate a CEAAct environmental review of the provincial road.

In the case of the upgrading project, potential Responsible Authorities (RAs) (federal government departments that would lead any environmental assessment of the project) under CEAAct would be as follows:

- Fisheries and Oceans Canada who administer the federal Fisheries Act.
- Transport Canada who administers the Canadian Transportation Act, as well as the Navigable Waters Protection Act.

According to CEAA, normally in the case of a project already assessed, the RAs would assess the proposed project changes and make a determination as to whether the changes were significant enough to require reassessing the project. If the changes were deemed to be significant, then it is likely that the RAs would typically start a new assessment rather than open the existing one. They would be free to use any applicable information from the existing assessment in the new assessment. Often, little new information is required for a new assessment.

The CEAA representative that we consulted surmised that if there is to be no change in bridge pier configuration or navigability, then it is likely that neither RA would require an EA for adjusting an existing bridge deck. A larger road footprint and higher speeds would not likely be an issue because those factors are not within the two RAs' mandates. Transport Canada might look for reassurance that the additional lanes would not affect navigability.

The new pedestrian bridge, however, would be considered a separate project and that would be what could trigger a review of the upgrading project.

9.0 NEW ENVIRONMENTAL INFORMATION NEEDS TO SUPPORT FACILITY-SPECIFIC ENVIRONMENTAL PERMIT APPLICATIONS

Table 9-1 shows for each of the project facilities planned for specific locations, the environmental permits required to construct them and the types of environmental information that would need to be generated to support applications for those permits. Some of this same information would need to be generated for any exercise to re-evaluate WRR-identified impacts and to support any future CEAA environmental assessments of the provincial road.

Table 9-1 Environmental Information Requirements for Obtaining Environmental Permits to construct the Provincial Upgrade Project

F	acility and Location	Environmental Permit Required	Environmental Information Required
•	Stand alone pedestrian bridge over Sturgeon River	LOC pursuant to Alberta Public Lands Act for bridge abutments and piers Depending on construction technique employed, approval to divert water pursuant to Alberta Water Act to install bridge piers	Depending on exact location, the required environmental information may already be available from WRR EIA
		Notification under the Code of Practice for Watercourse Crossings pursuant to the Alberta Water Act Federal	Depending on exact location, all environmental information may already available from WRR EIA
		Authorization pursuant to the federal Fisheries Act to construct piers in Sturgeon River	All environmental information may already available from WRR EIA
		Approval pursuant to the NWPA to construct pedestrian bridge	Depending on proximity of pedestrian bridge to WRR vehicle bridge, environmental information may be available from WRR EIA

F	acility and Location	Environmental Permit Required	Environmental Information Required
•	Enlarged existing SWMF assuming no changes to any already constructed outfall structures	Amendment to all registrations for SWM facilities entered under AEPEA. Amendment to LOCs for SWMF constructed immediately north of Sturgeon River	All environmental information already available from WRR EIA
•	New SWMF at Villeneuve Road and associated outfall channel connected to Carrot Creek (Assumes no temporary or permanent creek diversions). This is outside of the scope of study identified for the original EIA	LOC pursuant to Alberta Public Lands Act for SWM outfall into bank of Carrot Creek. Registration of SWMF and drainage plan pursuant to AEPEA. Federal	Requires site specific information about hydrology, water quality, vegetation and wildlife for Carrot Creek
	for WRR.	Authorization or Letter of Advice pursuant to federal Fisheries Act for installation of SWMF outlet and channel armouring in Carrot Creek	Requires fish and fish habitat, vegetation and wildlife information for Carrot Creek
		Approval pursuant to NWPA for SWM outfall and channel armouring in Carrot Creek	 Requires recreational land use information for Carrot Creek Requires fish and fish habitat, vegetation and wildlife information for Carrot Creek
•	New grade- separated railway crossing located west of existing at grade intersection	CTA approval may require environmental assessment before application can be approved	Sufficient environmental information available from WRR EIA

F	acility and Location	Environmental Permit Required	Environmental Information Required	
Removal of Wetlands		Approval pursuant to Alberta Water Act with reference to Draft Alberta Wetland Policy. Wetland compensation plans may be required when wetlands are disturbed	Proposed ROW needs to be examined for presence of wetlands. All wetlands potentially impacted require wetland assessment pursuant to interim Alberta Wetlands Policy	
•	Removal of City of St. Albert Natural Areas	No city permits required	Environmental Assessments may be required where natural areas are to be removed	
•	Provision of overall drainage Plan for project interchanges and widened footprint	Notification and subsequent registration pursuant to AEPEA.	Depending on design information, some biophysical information may need to be obtained within the footprint	

10.0 ENVIRONMENTAL INFORMATION NEEDS TO SUPPORT NEW ENVIRONMENTAL REVIEW PROCESSES

As mentioned in Chapters 9, new environmental information is required to:

- · re-evaluate the validity of WRR-identified impact predictions,
- · assess new impacts exclusive to the provincial roadway,
- · support environmental permit applications, and
- · support any future CEAAct environmental reviews of the upgrade project.

This chapter focuses on information needs for supporting a potential new CEAAct review for the provincial road. Included in the review is an assessment of how some new information generated from other land use initiatives in the project vicinity may contribute to the information needs of a potential CEAAct review.

The provincial road project would have a larger footprint than Ray Gibbon Drive. A major contributing factor is the land required for proposed grade-separated interchanges. A review of spatial environmental information contained in the WRR EIA confirms that some environmental information outside of the proposed WRR footprint was collected and that it can also be used for any new environmental review. Further, since the WRR EIA was completed and Ray Gibbon Drive constructed, there have been other land use developments in that vicinity of Ray Gibbon Drive. This is especially the case in the vicinity of the proposed 137 Avenue interchange where Area Structure Plans (ASPs) Those ASPs included environmental components that have have been completed. provided additional environmental information for the vicinity, focusing on locations of City of St. Albert-designated Natural Areas. Westworth Associates Environmental Ltd. (2007) undertook vegetation and wildlife investigations of St. Albert Natural Areas, previously identified by Spencer Environmental (1999), in the 137 Avenue vicinity. Included in Westworth's investigations were rare plant searches. We assume that those surveys were for vascular plants and that bryophytes were not included. An assessment of roadway project impacts on bryophytes was required for the WRR EIA. An update to the WRR EIA for CEAAct purposes should only need to obtain bryophyte information in the vicinity of the 137 Avenue interchange.

Some vegetation and wildlife data were obtained during the WRR EIA in the vicinity of the McKenney Drive interchange; however, only for lands within about a 100m corridor centered on the WRR centre line. Outside of that corridor, where the provincial road interchange extends, there would be insufficient information to support a CEAAct review, providing that natural habitats exist. Although some additional bryophyte information was collected in a few areas outside of the WRR corridor in 2004 (Spencer Environmental 2005), some new bryophyte information may need to be obtained.

The frequency of Natural Areas diminishes northward from McKenney Avenue as lands to the north are heavily cultivated. North of the CN rail crossing, no information for the WRR CEAA review was obtained because the CN rail line formed the north boundary for the WRR EIA. For Phases 2 and 3 of WRR, the same types of environmental

information that were developed for the WRR EIA were not obtained. That was due, in part, to the paucity of natural habitats and the fact that no federal EIA for these road segments was required. If Giroux Road were to be included within the scope of any future CEAAct review of the project, the area would need to be examined for natural areas and more detailed inventories of then undertaken.

No detailed vegetation, wildlife and fish investigations have been conducted in the vicinity of Villeneuve Road interchange for Phase 3 of the WRR project. That is because detailed planning for this section is still in preparation. Stormwater management planning for Phase 3 has recently been completed and will be the same as for the provincial road. It will involve instream work in Carrot Creek, a tributary to Big Lake. A SWMF to be constructed in the southwest quadrant of the interchange will drain by way of an armoured ditch to a stormwater outlet in the bank of Carrot Creek. At that outlet location, the channel of Carrot Creek will also be armoured. There is strong potential that Carrot Creek will be considered a fish-bearing stream by DFO and may also be considered navigable pursuant to NWPA. Carrot Creek is located well north of the north boundary of the WRR EIA and has some potential to trigger an environmental review of greater geographic scope than the WRR EIA. Contributing to this possibility, a provincial road environmental review could include the stand-alone pedestrian bridge, the grade-separated rail crossing and the Carrot Creek SWMF. While there is generally adequate environmental information available for the bridge and rail crossing locations, there is currently insufficient information for Carrot Creek to support a CEAAct environmental review processes and subsequent permitting.

With reference to the proposed dedicated pedestrian bridge over the Sturgeon River, our assessment is that, depending on its exact location, most of the technical environmental information required to support any environmental review of the project pursuant to CEAAct is in place. Most of the information is available from environmental/technical investigations conducted in support of the WRR EIA. The most critical information is fish and fish habitat information. If the location of the new bridge falls outside of the boundaries of that information obtained for the WRR EIA, new fish and fish habitat information will need to be obtained.

The WRR EIA scope was limited to the vicinity of the Sturgeon River bridge crossing and the rail crossing. Those locations were contained within Phase 1 of WRR construction. Since then, Phase 2 has been constructed to McKenney Avenue and detailed design for Phase 3, north to Villeneuve Road, has been proceeding.

Matters relating to acoustics were covered in detail in the WRR EIA. Considering the provincial road characteristics, it is highly probable that *CEAAct* RAs would ask for that information to be presented for any new review. New noise projections would need to be generated for those same locations as used in the WRR EIA and, potentially, for others.

A program of public consultation accompanied both planning and environmental assessment stages of WRR. A small but engaged group of stakeholders will have strong expectations for continued involvement in any initiatives to construct a provincial road.

Some stakeholders are well informed about potential environmental impacts, environmental review and permitting processes and, if not appropriately consulted, and even if so, will use whatever means are available to them to secure a high degree of public involvement. It would be in the best interests of the update project to conduct a meaningful public consultation program.

11.0 SUMMARY

Chapters three through 10 of this report:

- described the proposed provincial road and compared it with planned and constructed sections of Ray Gibbon Drive,
- made a preliminary assessment of the types of impacts that might be associated with the provincial road and identified those impact predictions in the WRR EIA that might need to be reassessed,
- reviewed the environmental permits that were issued for WRR construction and identified the new permits that may be required to construct the provincial road,
- reviewed the potential for any applications for new federal permits to trigger a *CEAAct* review of the provincial road,
- assessed the potential for a new environmental review pursuant to CEAAct for any other reasons, and finally,
- identified the environmental information needs for either re-assessing WRR-identified impacts, securing environmental permits or assessing the types of environmental impacts that might occur with the provincial road.

This chapter of the report presents our findings, conclusions and recommendations with regard to the following:

- Our communication with CEAA concerning future *CEAAct* environmental reviews.
- The need for any new environmental information to support any future reviews and environmental permitting.
- Future public consultation
- The potential for a future *CEAAct* review of the provincial road on the basis of federal environmental permits required.
- The accuracy of environmental impact predictions made in the WRR EIA, now that a provincial road is being proposed.

11.1 Regulatory Agency Liaison

On the basis of our review of the upgrade project components and on the basis of our conversations with Regional CEAA personnel, we are of the opinion that early consultation with provincial and federal regulators would be prudent for the following reasons:

• The environmental review for WRR was a cooperative initiative of the federal and provincial governments under a harmonization agreement pertaining to *CEAAct* projects. The provincial government has set a precedent for environmental reviews of this project.

- There are several potential triggers in the form of environmental permit applications for a new CEAAct review of the provincial road.
- The potential triggers for the provincial road project cover a broader geographic area than for the WRR.
- Personnel in the DFO regional office have changed since the WRR project was reviewed and personnel currently in that regional office may have a limited knowledge of the environmental permitting and review history for WRR. That could lead to DFO uncertainty in determining the scope of any CEAAct review of the provincial road. Further, personnel in Alberta's Environmental Assessment Branch will likely have changed and may also have limited knowledge of the project's review history. There is a good possibility of environmental stakeholders taking an active role in "educating" new federal and provincial personnel about the WRR project with the objective of influencing DFO's decisions.

11.2 Potential for a new CEAAct Environmental Review

There are several new components to the provincial road project that could trigger a CEAAct review. Those triggers are:

- an application for a Fisheries Authorization and NWPA approval for a newly proposed pedestrian-dedicated bridge crossing over the Sturgeon River,
- an application for CTA approval for a grade-separated interchange with the CN rail in the near vicinity of the one near Meadowview Drive that was constructed as part of WRR, and/or
- an application for a Fisheries Authorization and NWPA Approval for SWM facilities in Carrot Creek.

11.3 Accuracy of WRR Impact Predictions

Certain provincial road project characteristics make some environmental impact predictions presented in the WRR EIA suspect. The obvious ramification of that is that new or modified mitigation measures may need to be developed, however, that determination requires re-evaluation of impacts. The primary differences from the WRR causing uncertainty in impact severity prediction are:

- · the increased width of the overall roadway footprint,
- · the addition of grade-separated interchanges,
- · the increased speed limit proposed for the project,
- the increased traffic volumes anticipated, and
- the addition of another bridge structure across the Sturgeon River.

Further, certain design features of the provincial road create potential for new impacts specific to that project.

11.4 New Information Needs

The potential for the provincial road to be subjected to a new federal *CEAAct* review, the need for new provincial and federal environmental permits and the fact that some of the WRR impact predictions will need to be re-assessed initiated an analysis of technical environmental information needs. There is generally good technical environmental information in the original WRR EIA study area for supporting any future environmental reviews and permit applications that are required for provincial road project elements situated within that study area. There are, however, potential concerns about the adequacy of information collected within the WRR EIA study area relating to the following:

- The distribution of rare bryophytes. The bryophyte inventories undertaken for the WRR EIA were limited to a narrower corridor than for other vegetation values. Additional infill investigations were conducted in 2004 (Spencer Environmental 2005), but this information may still be incomplete.
- Fish and fish habitat information, if the location for the new pedestriandedicated bridge over the Sturgeon River falls outside of the location of fish habitat information obtained for WRR. This assumes that the new bridge would require fish habitat assessment work.
- Vegetation data at the site of the new bridge if situated outside of the WRR vegetation study area. New information may be required in support of an application for a LOC.
- The accuracy of noise projections used to predict impacts to wildlife and outdoor recreation pursuits. Those predictions were based on specific WRR design elements and it is quite possible that impacts would actually be more severe than predicted in the WRR EIA.

To the north of the former WRR EIA north boundary (the CN Rail line), there is insufficient technical environmental information to support securing environmental permits or for supporting any *CEAAct* review that might include those lands. That is because stormwater management strategies proposed for the area require detailed environmental information for Carrot Creek. For Carrot Creek, information would need to be obtained about surface hydrology and water quality, vegetation (including rare plants and bryophytes), wildlife (including amphibians, mammals and avifauna) and fish and fish habitat.

Further the roadway footprint may impact lands recently annexed by City of St. Albert that contain City of St. Albert designed Natural Areas. The City would require information on those areas. In addition, any wetlands situated within the roadway footprint would need to be re-assessed in support of the required *Alberta Water Act* Approvals to alter wetlands.

11.5 Public Consultation

Public consultation is a standard activity for many of INFTRA's project planning and environmental assessment activities. It was a critical component of the WRR EIA exercise. The public will have definite expectations that there be a continuing dialogue for any new environmental assessment whether it is *CEAAct*-initiated, provincially initiated, or just carried out as matter of INFTRA policy.

11.6 Recommendations

The following are our recommendations:

- The proponent for this proposed provincial road project should submit a revised project description to CTA and DFO, both of whom were CEAAct RAs for the WRR EIA. The purpose of that formal submission would be to obtain a determination from them as to environmental review requirements. The project description should also be supplied to Alberta Environment as the provincial government participated in the review of WRR.
- In anticipation of the project proceeding, a more detailed assessment of the interaction of the roadway footprint and City of St. Albert designated Natural Areas and any type of wetland should be undertaken.
- A new investigation for bryophytes should be undertaken focusing on those areas within the revised project area that were not covered in the WRR EIA or the supplementary work in 2004 (Spencer Environmental 2005). That investigation should focus on any areas of natural habitat.
- The location of the proposed pedestrian bridge over the Sturgeon River should be reviewed by the fisheries biologists who assisted with the WRR EIA so that a determination may be made about the applicability of WRR generated fisheries information to the pedestrian bridge location. Further, the information would be required to support federal government environmental permits.
- At Carrot Creek, at the location of potential instream activity, detailed biophysical information suitable for environmental permitting and reviews should be obtained should be obtained. That information will be required in support of both provincial and federal government permit applications.
- Noise predictions for the same locations assessed in WRR EIA should be recalculated using the new project description information. Some new locations may also need to be assessed. All potential environmental impact predictions reliant on that noise information should be re-evaluated.
- All other impact predictions identified for re-evaluation in this document should be re-assessed based on the new project description information.
- A strategy for public consultation to accompany any new environmental assessment activities associated with the provincial road project should be developed. That strategy should consider both regulatory and political demands considering the environmental assessment and public interest history of the project.

12.0 REFERENCES

12.1 Literature Cited

- Spencer Environmental. 1999. St. Albert Natural Areas Review and Inventory. Final Report. Prepared for City of St. Albert, Planning and Engineering Services. St. Albert, AB.
- Spencer Environmental. 2003. West Regional Road Environmental Impact Assessment. St. Albert, AB.
- Spencer Environmental. 2005. Rare Bryophyte Follow-up Surveys and Transplantations in the Vicinity of St. Albert West Regional Road Corridor.
- Stantec Consulting Ltd. 2007. St. Albert Natural Areas Review and inventory Addendum. Draft Report.
- Westworth Associates Environmental Ltd. 2007. Natural Areas Assessment for the South Riel Area Structure Plan. Prepared for Beaverbrook St. Albert Ltd. and IBI Group Ltd.

Appendix G Noise Report

aci Acoustical Consultants Inc. Suite 107, 9920-63Ave Edmonton, Alberta, Canada T6E 0G9 Phone: (780) 414-6373, Fax: (780) 414-6376

Environmental Noise Impact Assessment For

Ray Gibbon Drive, St. Albert

Prepared for: ISL Engineering and Land Services Ltd.

> Prepared by: S. Bilawchuk, M.Sc., P.Eng. aci Acoustical Consultants Inc. Edmonton, Alberta

APEGGA Permit to Practice #P7735

асі Project #: 08-010 April 24, 2008

Executive Summary

Acoustical Consultants Inc., of Edmonton AB, was retained by ISL Engineering and Land Services Ltd. (ISL) to conduct an environmental noise impact assessment for the proposed Ray Gibbon Drive (RGD) in St. Albert, Alberta. The purpose of the work was to generate a computer noise model of the proposed road and determine the relative noise impact on current and future residential developments. In addition, the noise levels were to be compared to the highway noise guidelines set forth by Alberta Infrastructure and Transportation (AIT).

The results of the noise modeling for Future Conditions on the RGD indicated noise levels in excess of the AIT guidelines criteria of 65 dBA L_{eq}24¹ at many locations directly adjacent to the RGD, indicating that noise mitigation would be required. In particular, some locations were as high as 69 dBA L_{eq}24. As such, noise mitigation barriers were added to the model with the intent of meeting two design criteria: 1) a total noise level less than 65 dBA Leq24, and 2) a minimum reduction (relative to the baseline case) of 5 dBA with the installation of a noise wall.

The results of the noise mitigation measures indicated a noise barrier height of 3.5 m would be required for much of the study area (entirely on the east side of the RGD) spanning from just south of McKenney Avenue all the way north to approximately 260 m south of Villeneuve Road. From this point, further north until approximately 400 m east of Villeneuve Road, a 1.8 m barrier will suffice.

Finally, as an exercise, the three main traffic parameters which affect the noise levels (i.e. volume, % heavy trucks, and speed) were reviewed to determine the sensitivity of each on the noise levels. It was found that modification to each one (by ± 10 %) had a small impact on the noise levels and differences would not be subjectively noticeable. The cumulative effect of increasing all three parameters by 10% resulted in increases ranging from 0.1 - 1.7 dBA which would still be barely subjectively noticeable. Further, the increased noise levels at all locations would still be below 65 dBA $L_{eq}24$ with the above mentioned noise mitigation. The only area which is of concern for this was the 1.8 m barrier section at the north end of North Ridge. The noise levels resulting from increases of 10% to the three parameters will be very close to 65 dBA $L_{eq}24$. It is, therefore, recommended to review the possibility of increasing the barrier height to 3.5 m (similar to the other areas to the south).

¹ The term L_{eq} represents the energy equivalent sound level. This is a measure of the equivalent sound level for a specified period of time accounting for fluctuations.

April 24, 2008

Table of Contents

1.0 Introduction	1
2.0 Location Description	1
3.0 Modeling Methods	3
4.0 Permissible Sound Levels	5
5.0 Results and Discussion	é
5.1. Future Conditions	6
5.2. Future Mitigation Conditions	8
5.3. Future Sensitivity Analysis	11
5.3.1. Traffic Volume	11
5.3.2. % Heavy Vehicles	11
5.3.3. Speed	14
5.3.4. Cumulative Effect	16
6.0 Conclusion	18
7.0 References	19
Appendix I NOISE MODELING PARAMETERS	27
Appendix II THE ASSESSMENT OF ENVIRONMENTAL NOISE (GENERAL)	28
Appendix III SOUND LEVELS OF FAMILIAR NOISE SOURCES	40
List of Tables	
Table 1. Future Conditions Noise Modeling Results	7
Table 2. Future Mitigation Noise Modeling Results	
Table 3. Future Mitigation with Change in % Heavy Trucks Noise Modeling Results	13
Table 4. Future Mitigation with Change in Speed Noise Modeling Results	15
Table 5. Future Mitigation with Cumulative Impact of Higher Volumes, % Heavy Traffic and S	Speeds
Noise Modeling Results	17
List of Figures	
Figure 1a. Study Area (South)	20
Figure 1b. Study Area (North)	
Figure 2a. Future Conditions Leq24 Noise Modeling Results (South Study Area)	
Figure 2b. Future Conditions Leq24 Noise Modeling Results (North Study Area)	
Figure 3a. Future Mitigation Conditions Leg24 Noise Modeling Results (South Study Area)	
Figure 3b. Future Mitigation Conditions Lcq24 Noise Modeling Results (North Study Area)	
Figure 4. Minimum Recommended Wooden Fence Construction Sectional View	
Figure 5. Minimum Recommended Walkway/Roadway Penetration Barrier Construction	26

1.0 Introduction

Acoustical Consultants Inc., of Edmonton AB, was retained by ISL Engineering and Land Services Ltd. (ISL) to conduct an environmental noise impact assessment for the proposed Ray Gibbon Drive (RGD) in St. Albert, Alberta. The purpose of the work was to generate a computer noise model of the proposed road and determine the relative noise impact on current and future residential developments. In addition, the noise levels were to be compared to the highway noise guidelines set forth by Alberta Infrastructure and Transportation (AIT).

2.0 Location Description

RGD is proposed to be a 8-lane twinned freeway on the west side of St. Albert, Alberta. RGD will extend from the south end where it will intersect with Anthony Henday Drive (AHD) in Edmonton (currently under construction) up to the north end where it will intersect with Hwy. 2 north of St. Albert, as shown in Fig. 1. Starting from the grade separated interchange at AHD, RGD will head north until the proposed grade separated interchange at 137 Avenue (east of the proposed South Riel subdivision). RGD will then curve to the northwest and cross the Sturgeon River and continue until the proposed grade separated interchange with McKenney Avenue (east of the proposed Timberlea subdivision). RGD will then curve north, cross the CP Rail line (RGD will go underneath the Rail line) and then meet the proposed grade separated interchange at Giroux Road. RGD will then continue north until the proposed grade separated interchange with Villeneuve Road. Finally, RGD will turn northeast until the proposed grade separated interchange with Highway 2, north of St. Albert.

Current residential development east of the proposed RGD (near the road) includes the North Ridge subdivision. All other existing residential development on the east side of RGD is several hundred meters away and is not of concern because there is proposed development which will be much closer to RGD. To the west of RGD are some acreage style residences including two near the existing 137 Avenue, four along McKenney Avenue, one along Giroux Road, one between Giroux Road and Villeneuve Road and two just north of Villeneuve Road. Of these acreage style residences, the closest to RGD is approximately 200 m away.

Proposed residential development includes the South Riel subdivision to be located east of RGD, north of the existing 137 Avenue and south of Levasseur Road. The closest residential lots to RGD will be approximately 300 m away. The next proposed development is the Timberlea subdivision which will be located east of RGD, north of the Sturgeon River and south of the CN Rail line. The closest residential lots to RGD will be at the road right-of-way, 30 m from the road curb. The next development will be east of RGD, north of the CN Rail line and south of Giroux Road. As with the Timberlea subdivision, the closest residential lots will likely be at the 30 m road right-of-way. North of Giroux Road is the existing North Ridge subdivision. Although the current houses in the southwest portion of the subdivision are approximately 100 m from the nearest off-ramp, future development closer to the road is possible. As such, the closest residential lots may be at the 30 m right-of-way. This will continue along the east side of RGD, all the way north until Villeneuve Road. Finally, north of Villeneuve Road, there is an offset due to a service road with the closest potential residential lots at least 225 m from RGD. This continues north until beyond the limits of the study area.

Topographically, the land in the area is generally flat with gradual changes in elevation throughout. There are some existing sections with earth piled in preparation for the pending interchanges. At the proposed interchanges, the contours will have a combination of RGD reducing in elevation and the intersecting avenue/road increasing in elevation to allow room for the bridges. This will provide a level of acoustical shielding for surrounding receptors.

3.0 Modeling Methods

The computer noise modeling was conducted using the CADNA/A (version 3.7.123) software package. CADNA/A allows for the modeling of various noise sources such as road, rail, and various stationary sources. In addition, topographical features such as land contours, vegetation, and bodies of water can be included. Finally, meteorological conditions such as temperature, relative humidity, wind-speed and wind-direction can be included in the calculations.

The calculation method used for noise propagation follows the ISO standard 9613-2. All receiver locations were assumed as being downwind from the source(s). In particular, as stated in Section 5 of the ISO document:

"Downwind propagation conditions for the method specified in this part of ISO 9613 are as specified in 5.4.3.3 of ISO 1996-2:1987, namely

- wind direction within an angle of ± 45⁰ of the direction connecting the centre of the dominant sound source and the centre of the specified receiver region, with the wind blowing from source to receiver, and
- wind speed between approximately 1 m/s and 5 m/s, measured at a height of 3 m to 11 m above the ground.

The equations for calculating the average downwind sound pressure level LAT(DW) in this part of ISO 9613, including the equations for attenuation given in clause 7, are the average for meteorological conditions within these limits. The term average here means the average over a short time interval, as defined in 3.1.

These equations also hold, equivalently, for average propagation under a well-developed moderate ground-based temperature inversion, such as commonly occurs on clear, calm nights".

Due to the small amount of vegetation and relatively short distances between the road and receptor locations, no vegetation was included in the model. Similarly, no snow cover was included since there can be variation in absorption/reflection caused by different snow conditions. As a result, all sound level propagation calculations are considered conservative.

The exact location of future residential lots are not known, but it is apparent that they will likely be directly adjacent to the road right-of-way. As such, a receptor location of 10 m from the right-of-way was used to represent a "typical" backyard outdoor amenity location. All receptors were modeled at a

height of 1.5 m which is consistent with the applicable guidelines. Also, given that most locations would have no buildings in between RGD and the residential outdoor amenity spaces, and because none of the nearby residential lot layouts are currently known buildings were not included. Again, this will result in a conservative estimate of the noise levels.

The noise modeling was conducted with several scenarios. These included:

- Future Conditions. With projected traffic volumes (approximately 20 years) maximum volumes on 8-lane twinned configuration on RGD and grade separated interchanges at:
 - a. Anthony Henday Drive
 - b. 137 Avenue
 - c. McKenney Avenue
 - d. Giroux Road
 - e. Villeneuve Road

Traffic data for all roads were provided by ISL, along with road layouts and topographical information.

- Future Mitigation Conditions. As in Item #1 with noise mitigation required to reduce the noise levels a) below 65 dBA L_{eq}24 and b) at least 5 dBA relative to no mitigation.
- Future Sensitivity Analysis. As in Item #2 with sensitivity analysis on RGD traffic parameters listed below. This involved modification of the various parameters to determine their effect on noise levels.
 - a. Traffic counts
 - b. Traffic composition (i.e. % heavy vehicles)
 - c. Traffic speeds

The computer noise modeling results were calculated in two ways. First, sound levels were calculated at specific receiver locations (i.e. residents). Next, the sound levels were calculated using a 10 m x 10 m grid over the entire study area. This provided color noise contours for easier visualization of the results.

Refer to Appendix I for a list of the computer noise modeling parameters.

4.0 Permissible Sound Levels

Environmental noise levels from road traffic are commonly described in terms of equivalent sound levels or L_{eq}. This is the level of a steady sound having the same acoustic energy, over a given time period, as the fluctuating sound. In addition, this energy averaged level is A-weighted to account for the reduced sensitivity of average human hearing to low frequency sounds. These L_{eq} in dBA, which are the most common environmental noise measure, are often given for day-time (07:00 to 22:00) L_{eq}Day and night-time (22:00 to 07:00) L_{eq}Night while other criteria use the entire 24-hour period as L_{eq}24. Refer to Appendix II for a description of the acoustical terminology, and Appendix III for a list of common noise sources.

The criteria used to evaluate the road noise in the study area are based on the draft document entitled "Noise Attenuation Guidelines for Provincial Highways Under Provincial Jurisdiction Within Cities and Urban Areas" by Alberta Infrastructure and Transportation. The document specifies:

"For construction or improvement of highways through cities and other urban areas where noise in residential areas is expected to exceed 65 dBA L_{eq}24, Alberta Infrastructure and Transportation will consider noise mitigation..."

The noise levels are to be measured for the first row of dwellings adjacent to the highway at 1.5 m above ground level, 15 m from the dwelling's façade.

5.0 Results and Discussion

5.1. Future Conditions

The results of the Future Conditions noise modeling are shown in Table 1 and Fig. 2. It can be seen that the projected noise levels will be below the limit of 65 dBA L_{eq}24 for all locations south of the Sturgeon River and east of RGD. North of the river is a relatively large environmental reserve in which noise levels are not a concern. At the first area of residential development east of RGD (labelled as Timberlea 1 in Fig. 2), however, the noise levels will be above 65 dBA L_{eq}24. At the location labelled Timberlea 2, the noise level will be marginally below 65 dBA L_{eq}24, however, noise mitigation is still warranted. Further north and east of RGD, and still south of McKenney Avenue, there is enough shielding provided by the off-ramp to result in levels well below 65 dBA L_{eq}24. A similar scenario occurs north of McKenney Avenue and east of RGD with some shielding being provided by the on-ramp and then noise levels increasing at locations such as Timberlea 7 and Timberlea 8. The noise climate will be similar east of RGD, north of the CN Rail line and South of Giroux Road. Similarly, in North Ridge, many of the locations are projected to be higher than 65 dBA L_{eq}24. Finally, north of Villeneuve Road and east of RGD, the noise climate will be below 65 dBA L_{eq}24 in the area east of the service road.

On the west side of RGD, at all of the adjacent acreage style residences, the noise levels are projected to be well below 65 dBA Leq24. This is largely a function of distance from RGD. As mentioned previously, the closest residence is approximately 200 m from RGD. This is a substantial setback (relative to the closer subdivision locations east of RGD). It is important to note that noise from RGD will be distinctly audible, but still below the criteria for which mitigation will be required.

Table 1. Future Conditions Noise Modeling Results

Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	LeqNight (dBA)
South Riel 1	60.6	62.1	54.9
South Riel 2	57.8	59.3	52.0
Fieldhouse	57.2	58.7	51.4
Track	52.7	54.3	47.0
Timberlea 1	66.8	68.3	61.0
Timberlea 2	64.7	66.3	59
Timberlea 3	59.9	61.4	54.1
Timberlea 4	60.9	62.5	55.2
Timberlea 5	60.9	62.5	55.2
Timberlea 6	61.0	62.6	55.3
Timberlea 7	67.4	69.0	61.7
Timberlea 8	67.9	69.5	62.2
Timberlea 9	63.6	65.2	57.9
Residential 1'	64.7	66.3	58.9
Residential 2	68.8	70.4	63.0
Residential 3	66.7	68.3	61.0
Residential 4	62.6	64.2	56.8
North Ridge 1	62.1	63.7	56.3
North Ridge 2	60.7	62.3	54.9
North Ridge 3	65.7	67.2	59.9
North Ridge 4	66.7	68.3	60.9
North Ridge 5	66.1	67.7	60.3
North Ridge 6	63.9	65.5	58.2
North Ridge 7	63.6	65.2	57.9
North Ridge 8	64.3	65.8	58.5
North Resident	57.7	59.3	52.0
Acreage 1	58.1	59.7	52.5
Acreage 2	60.9	62.5	55.2
Acreage 3	58.2	59.7	52.4
Acreage 4	59.6	61.2	53.9
Acreage 5	58.0	59.6	52.3
Acreage 6	55.1	56.7	49.3
Acreage 7	55.4	56.9	49.5
Acreage 8	50.3	51.9	44.5
Acreage 9	55.2	56.8	49.4
Acreage 10	52.0	53.6	46.3

5.2. Future Mitigation Conditions

As a result of the modeling under future conditions, noise mitigation will be required for many of the areas east of RGD from just south of McKenney Avenue up to Villeneuve Road. As a result, noise barriers were included into the model to determine the relative locations and heights required. The two assessment criteria used for evaluation of the barrier effectiveness were as follows:

- 1) The barrier had to result in a noise level below 65 dBA Leg24.
- 2) The total noise reduction with the barrier (relative to no-barrier conditions) had to be at least 5 dBA. This is the typical minimum acceptable level of attenuation required to justify the cost associated with installation of a barrier since any less reduction is only marginally subjectively noticeable.

Using these two criteria, noise barriers were modeled adjacent to all of the locations for which the Future Conditions modeling resulted in noise levels in excess of 65 dBA L_{eq}24. The barriers were located at RGD right-of-way since this would be at the rear property line of the proposed future development. The barrier heights were started at 1.83 m (6-ft) and increased until both of the criteria were satisfied.

The modeling indicated that a height of 3.5 m relative to grade would be required for most locations. In particular:

- Starting from the southwest residential lot adjacent to RGD in Timberlea (south of McKenney Avenue) and wrapping around along the south edge for at least 2-lots and then continuing until approximately 120 m south of McKenney Avenue.
- Starting from approximately 100 m north of McKenney Avenue in Timberlea and continuing until the CN Rail right-of-way then wrapping around adjacent to the CN Rail right-of-way for at least 2-lots from RGD.
- Starting from north of the CN Rail right-of-way (and also wrapping around adjacent to the CN Rail right-of-way for at least 2-lots from RGD and continuing on until just south of Giroux Road and extending east to approximately 75 m east of RGD.
- Starting at approximately 250 m north of Giroux Road and continuing along until approximately 260 m south of Villeneuve Road.

North of this, a barrier height of 1.8 m can be used starting from 260 m south of Villeneuve Road and continuing north then turning east until approximately 400 m east of RGD.

The resulting noise levels with the barriers in place are shown in Table 2 and Fig. 3. It can be seen that all locations which were previously above 65 dBA L_{eq}24 are now well below and have a reduction of at least 5 dBA.

Table 2. Future Mitigation Noise Modeling Results

Receptor	L _{eq} 24 (dBA)	L _{eq} 24 Change Relative to No Mitigation (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA
South Riel 1	60.6	0.0	62.1	54.9
South Riel 2	57.8	0.0	59.3	52.0
Fieldhouse	57.2	0.0	58.7	51.4
Track	52.7	0.0	54.3	47.0
Timberlea 1	60.5	-6.3	62.1	54.8
Timberlea 2	59.1	-5.6	60.7	53.4
Timberlea 3	59.4	-0.5	61.0	53.7
Timberlea 4	60.6	-0.3	62.2	54.9
Timberlea 5	60.8	-0.1	62.4	55.1
Timberlea 6	60.6	-0.4	62.2	54.9
Timberlea 7	61.7	-5.7	63.2	55.9
Timberlea 8	61.3	-6.6	62.9	55.5
Timberlea 9	59.6	-4.0	61.1	53.8
Residential 1	59.8	-4.9	61.4	54.0
Residential 2	62.0	-6.8	63.6	56.2
Residential 3	61.5	-5.2	63.1	55.7
Residential 4	62.2	-0.4	63.8	56.4
North Ridge 1	61.9	-0.2	63.5	56.2
North Ridge 2	60.6	-0.1	62.2	54.8
North Ridge 3	59.8	-5.9	61.3	54.0
North Ridge 4	60.3	-6.4	61.9	54.5
North Ridge 5	60.3	-5.8	61.9	54.5
North Ridge 6	63.2	-0.7	64.8	57.4
North Ridge 7	63.5	-0.1	65.0	57.7
North Ridge 8	62.3	-2.0	63.9	56.6
North Resident	57.7	0.0	59.3	52.0
Acreage 1	58.1	0.0	59.7	52.5
Acreage 2	60.9	0.0	62.5	55.2
Acreage 3	58.2	0.0	59.7	52.4
Acreage 4	59.6	0.0	61.2	53.9
Acreage 5	58.0	0.0	59.6	52.3
Acreage 6	55.1	0.0	56.7	49.3
Acreage 7	55.4	0.0	56.9	49.5
Acreage 8	50.3	0.0	51.9	44.5
Acreage 9	55.2	0.0	56.8	49.4
Acreage 10	52.0	0.0	53.6	46.3

Barrier construction can generally be either solid screen wood fences or masonry noise walls. If using wood materials, the fences should be, at a minimum, double boarded with no visible gaps through the fence or at the bottom and have a surface density of at least 20 kg/m². A sample schematic of fence construction is provided in Fig. 4. For masonry noise walls, there should also be no visible gaps and the surface density must also be at least 20 kg/m².

If there are to be any walkways or roadways penetrating through the proposed barrier locations, then the barrier should either: a) wrap around on both sides of the opening on the inside for at least the distance from the rear property line to the structure or, b) wrap around past the opening for at least 3 equivalent opening dimensions. Both options are shown in Fig. 5.

For all barriers taller than 1.83 m, it is possible to exchange berm height for fence height and vice-versa, as long as the centerline of the fence does not change (i.e. it remains at the current proposed property line). The key is that the total height has to be that listed above.

Barriers abutting each other with varying elevations can either have an abrupt change or a gradual change as long as the appropriate heights are in place for their respective locations.

10

5.3. Future Sensitivity Analysis

As part of the study, a sensitivity analysis was completed to determine the relative impact of the three main traffic parameters which effect the noise levels (traffic volume, % heavy vehicles, speed). The Future Mitigation Conditions model was used as the base and then each of the three parameters was modified by a specific amount to determine the impact. In addition, the cumulative effect of modifying all three parameters was evaluated to determine the "worst case" impact.

5.3.1. Traffic Volume

The analysis of varying traffic volume does not require modifications to the noise model. As with any noise source, the relative change in noise level with changing quantity is a simple logarithmic function as indicated below:

$$\Delta SPL = 10 \log_{10} (relative change)$$

This means that if the traffic volumes, for example, are doubled, there will be a 3.0 dBA increase. If there is an increase in traffic volumes of 10% (likely maximum error in 20 year planning horizon), there will be a 0.4 dBA increase. An increase of this magnitude would not be subjectively noticeable and would be insufficient to result in noise levels above 65 dBA Leq24 at all locations once the previously discussed noise mitigation has been implemented. As an aside, typical traffic volumes on urban roads only vary a few % from day-to-day. This means that changes in noise levels from day-to-day are almost entirely dictated by environmental and meteorological conditions, and not by varying traffic volumes.

5.3.2. % Heavy Vehicles

In order to determine the effect of varying % heavy trucks, two scenarios were modeled. The Future Mitigation Conditions case included day-time and night-time % heavy trucks of 10% south of 137 Avenue and 5% north of 137 Avenue on RGD. These values were increased by 5% and then decreased by 5% to determine a relative range of values. It is un-likely that in the future 15 % heavy trucks will fall outside of this range. The results are shown in Table 3. It can be seen that the relative sound level increase with 15% heavy trucks south of 137 Avenue and 10% heavy trucks north of 137 Avenue is approximately 0.1 – 1.1 dBA. The relative sound level decrease with 5% heavy trucks south of

137 Avenue and 0% heavy trucks north of 137 Avenue is approximately 0.2 – 1.5 dBA. Again, given that a minimum 2.0 – 3.0 dBA change is required before most people start to notice a change, it will take a significant change to the % heavy trucks before most people will notice the difference. Also, with an increase of heavy trucks as mentioned above, the noise levels will still be below the AIT limit of 65 dBA L_{eq}24 at all locations once the previously discussed noise mitigation has been implemented.

In general, the effect of changing the % heavy trucks is logarithmic. The difference between 0% and 1% is significant (approximately 0.7 dBA) while the difference between 10% and 11% is much less (approximately 0.2 dBA). Since the current and future modeled % heavy trucks are near 10%, small % changes will not have a significant impact.

Table 3. Future Mitigation with Change in % Heavy Trucks Noise Modeling Results

Receptor	Trucks on RGD + 5% L _{eq} 24 (dBA)	Change in Leq24 Relative to Future Mitigation Conditions (dBA)	Trucks on RGD - 5% L _{eq} 24 (dBA)	Change in Leg24 Relative to Future Mitigation Conditions (dBA)
South Riel 1	60.9	0.3	60.2	-0.4
South Riel 2	58.7	0.9	56.5	-1.3
Fieldhouse	58.2	1.0	55.8	-1.4
Track	53.7	1.0	51.3	-1.4
Timberlea 1	61.5	1.0	59.2	-1.3
Timberlea 2	60.0	0.9	57.9	-1.2
Timberlea 3	59.9	0.5	58.8	-0.6
Timberlea 4	61.0	0.4	60.2	-0.4
Timberlea 5	61.2	0.4	60.4	-0.4
Timberlea 6	61.3	0.7	59.7	-0.9
Timberlea 7	62.7	1.0	60.3	-1.4
Timberlea 8	62.4	1.1	59.9	-1.4
Timberlea 9	60.6	1.0	58.1	-1.5
Residential 1	60.8	1.0	58.3	-1.5
Residential 2	63.1	1,1	60.6	-1.4
Residential 3	62.5	1.0	60.1	-1.4
Residential 4	62.7	0.5	61.6	-0.6
North Ridge 1	62.4	0.5	61.5	-0.4
North Ridge 2	61.6	1.0	59.3	-1.3
North Ridge 3	60.8	1.0	58.4	-1.4
North Ridge 4	61.4	1.1	58.9	-1.4
North Ridge 5	61.3	1.0	58.9	-1.4
North Ridge 6	64.1	0.9	62.1	-1.1
North Ridge 7	63.7	0.2	63.2	-0.3
North Ridge 8	62.5	0.2	62.1	-0.2
North Resident	58.5	0.8	56.6	-1.1
Acreage 1	58.4	0.3	57.8	-0.3
Acreage 2	61.4	0,5	60.3	-0.6
Acreage 3	58.9	0.7	57.3	-0.9
Acreage 4	60.0	0.4	59.3	-0.3
Acreage 5	58.2	0.2	57.7	-0.3
Acreage 6	55.9	0.8	54.1	-1.0
Acreage 7	55.5	0.1	55.2	-0.2
Acreage 8	51.2	0.9	49.1	-1.2
Acreage 9	55.6	0.4	54.7	-0.5
Acreage 10	52.9	0.9	50.9	-1.1

5.3.3. Speed

In order to determine the effect of different traffic speeds, two scenarios were modeled. The Future Mitigation Conditions case included a speed of 100 km/hr on RGD throughout the entire study area. This speed was increased to 110 km/hr and then decreased to 90 km/hr to determine the relative change compared to 100 km/hr. It is highly unlikely that the traffic speeds will fall outside of this range. Table 4 shows the L_{eq}24 results for both the 110 km/hr and 90 km/hr conditions as well as the relative change in noise levels at all modeled receptor locations. When increasing the speed to 110 km/hr, the noise levels increased by 0.0 – 0.8 dBA. When reducing the speed to 90 km/hr, the noise levels decreased by 0.1 – 0.8 dBA. As with the % heavy trucks assessment, given that a minimum 2.0 – 3.0 dBA change is required before most people start to notice a change, changing the traffic speeds will not significantly impact the perceived noise climate. Also, with an increase in speeds as mentioned above, the noise levels will still be below the AIT limit of 65 dBA L_{eq}24 at all locations once the previously discussed noise mitigation has been implemented.

14

Table 4. Future Mitigation with Change in Speed Noise Modeling Results

Receptor	Speed on RGD 110 km/hr L _{eq} 24 (dBA)	Change in Leq24 Relative to Future Mitigation Conditions (dBA)	Speed on RGD 90 km/hr L _{eq} 24 (dBA)	Change in L _{eq} 24 Relative to Future Mitigation Conditions (dBA)
South Riel 1	60.8	0.2	60.4	-0.2
South Riel 2	58.4	0.6	57.1	-0.7
Fieldhouse	57.9	0.7	56.4	-0.8
Track	53.4	0.7	52.0	-0.7
Timberlea 1	61.2	0.7	59.8	-0.7
Timberlea 2	59.8	0.7	58.5	-0.6
Timberlea 3	59.8	0.4	59.1	-0.3
Timberlea 4	60.9	0.3	60.4	-0.2
Timberlea 5	61.1	0.3	60.6	-0.2
Timberlea 6	61.1	0.5	60.2	-0.4
Timberlea 7	62.4	0.7	61.0	-0.7
Timberlea 8	62.1	0.8	60.5	-0.8
Timberlea 9	60.3	0.7	58.8	-0.8
Residential 1	60.5	0.7	59.0	-0.8
Residential 2	62.8	0.8	61.3	-0.7
Residential 3	62.2	0.7	60.8	-0.7
Residential 4	62.5	0.3	61.9	-0.3
North Ridge 1	62.2	0.3	61.7	-0.2
North Ridge 2	61.3	0.7	59.9	-0.7
North Ridge 3	60.5	0.7	59.0	-0.8
North Ridge 4	61.1	0.8	59.6	-0.7
North Ridge 5	61.0	0.7	59.6	-0.7
North Ridge 6	63.8	0.6	62.6	-0.6
North Ridge 7	63.7	0.2	63.3	-0.2
North Ridge 8	62.5	0.2	62.2	-0.1
North Resident	58.3	0.6	57,1	-0.6
Acreage 1	58.3	0.2	57.9	-0.2
Acreage 2	61.2	0.3	60.6	-0.3
Acreage 3	58.7	0.5	57.7	-0.5
Acreage 4	59.9	0.3	59.4	-0.2
Acreage 5	58.1	0.1	57.8	-0.2
Acreage 6	55.6	0.5	54.6	-0.5
Acreage 7	55.4	0.0	55.3	-0.1
Acreage 8	50.9	0.6	49.7	-0.6
Acreage 9	55.5	0.3	54.9	-0.3
Acreage 10	52.7	0.7	51.4	-0.6

5.3.4. Cumulative Effect

With the information provided by the sensitivity analysis for each of the three main traffic parameters, it is possible to determine a cumulative effect if all three are taken into account simultaneously. As such, increasing the traffic volume by 10%, increasing the traffic speed to 110 km/hr, and increasing the heavy trucks to 15% south of 137 Avenue and 10 % north of 137 Avenue will result in an overall maximum increase ranging from 0.1 – 1.7 dBA as shown in Table 5. Even with this increase, the highest sound level at any residential receptor will still be below the limit of 65 dBA. However, the residential receptors at the north end of North Ridge will be very close. The noise mitigation recommendations, provided in Section 5.2 indicated that the height of the barrier would only need to be 1.8 m at this location. It is, therefore, recommended to review the possibility of increasing the barrier height to 3.5 m (similar to the other areas to the south).

<u>Table 5. Future Mitigation with Cumulative Impact of Higher Volumes, % Heavy Traffic and</u>
<u>Speeds Noise Modeling Results</u>

Receptor	Cumulative Effect L _{eq} 24 (dBA)	Change in Leq24 Relative to Future Mitigation Conditions (dBA)
South Riel 1	61.1	0.5
South Riel 2	59.3	1.5
Fieldhouse	58.8	1.6
Track	54.3	1.6
Timberlea 1	62.1	1.6
Timberlea 2	60.6	1.5
Timberlea 3	60.2	0.8
Timberlea 4	61.3	0.7
Timberlea 5	61.4	0.6
Timberlea 6	61.8	1.2
Timberlea 7	63.2	1.5
Timberleå 8	62.9	1.6
Timberlea 9	61.2	1.6
Residential 1	61.4	1.6
Residential 2	63.6	1.6
Residential 3	63.1	1.6
Residential 4	62.9	0.7
North Ridge 1	62.6	0.7
North Ridge 2	62.1	1.5
North Ridge 3	61.4	1.6
North Ridge 4	62.0	1.7
North Ridge 5	61.9	1.6
North Ridge 6	64.6	1.4
North Ridge 7	63.9	0.4
North Ridge 8	62.6	0.3
North Resident	59.0	1.3
Acreage 1	58.6	0.5
Acreage 2	61.7	0.8
Acreage 3	59.3	1.1
Acreage 4	60.2	0.6
Acreage 5	58.3	0.3
Acreage 6	56.3	1.2
Acreage 7	55.5	0.1
Acreage 8	51.7	1.4
Acreage 9	55.9	0.7
Acreage 10	53.4	1.4

17

6.0 Conclusion

The results of the noise modeling for Future Conditions on RGD indicated noise levels in excess of the AIT guidelines criteria of 65 dBA L_{eq}24 at many locations directly adjacent to RGD, indicating that noise mitigation would be required. In particular, some locations were as high as 69 dBA L_{eq}24. As such, noise mitigation barriers were added to the model with the intent of meeting two design criteria: 1) a total noise level less than 65 dBA Leq24, and 2) a minimum reduction (relative to the baseline case) of 5 dBA with the installation of a noise wall.

The results of the noise mitigation measures indicated a noise barrier height of 3.5 m would be required for much of the study area (entirely on the east side of RGD) spanning from just south of McKenney Avenue all the way north to approximately 260 m south of Villeneuve Road. From this point, further north until approximately 400 m east of Villeneuve Road, a 1.8 m barrier will suffice.

Finally, as an exercise, the three main traffic parameters which affect the noise levels (i.e. volume, % heavy trucks, and speed) were reviewed to determine the sensitivity of each on the noise levels. It was found that modification to each one (by ± 10 %) had a small impact on the noise levels and differences would not be subjectively noticeable. The cumulative effect of increasing all three parameters by 10% resulted in increases ranging from 0.1-1.7 dBA which would still be barely subjectively noticeable. Further, the increased noise levels at all locations would still be below 65 dBA L_{eq} 24 with the above mentioned noise mitigation. The only area which is of concern for this was the 1.8 m barrier section at the north end of North Ridge. The noise levels resulting from increases of 10% to the three parameters will be very close to 65 dBA L_{eq} 24. It is, therefore, recommended to review the possibility of increasing the barrier height to 3.5 m (similar to the other areas to the south).

7.0 References

- "Noise Attenuation Guidelines for Provincial Highways Under Provincial Jurisdiction Within Cities and Urban Areas" DRAFT version, by Alberta Infrastructure and Transportation. January 31, 2006.
- International Organization for Standardization (ISO), Standard 1996-1, Acoustics Description, measurement and assessment of environmental noise – Part 1: Basic quantities and assessment procedures, 2003, Geneva Switzerland.
- International Organization for Standardization (ISO), Standard 9613-1, Acoustics Attenuation
 of sound during propagation outdoors Part 1: Calculation of absorption of sound by the
 atmosphere, 1993, Geneva Switzerland.
- International Organization for Standardization (ISO), Standard 9613-2, Acoustics Attenuation
 of sound during propagation outdoors Part 2: General method of calculation, 1996, Geneva
 Switzerland.

Figure 1a. Study Area (South)

Figure 1b. Study Area (North)

Figure 2a. Future Conditions Leg24 Noise Modeling Results (South Study Area)

Figure 2b. Future Conditions Leg24 Noise Modeling Results (North Study Area)

Figure 3a. Future Mitigation Conditions Leg24 Noise Modeling Results (South Study Area)

Figure 3b. Future Mitigation Conditions Leq24 Noise Modeling Results (North Study Area)

Figure 4. Minimum Recommended Wooden Fence Construction Sectional View

Figure 5. Minimum Recommended Walkway/Roadway Penetration Barrier Construction

Appendix I

NOISE MODELING PARAMETERS

Road	Day (Vehicles Per Hour)	Day % Heavy Trucks	Night (Vehicles Per Hour)	Night % Heavy Trucks	Speed (km/hr
RGD Between AHD and 137 Ave NB	2145	10	400	10	100
RGD Between AHD and 137 Ave SB	2145	10	400	10	100
RGD Between 137 Ave and McKenney Ave NB	2430	5	450	5	100
RGD Between 137 Ave and McKenney Ave SB	2430	5	450	5	100
RGD Between McKenney Ave and Giroux Road NB	2120	5	390	5	100
RGD Between McKenney Ave and Giroux Road SB	2120	5	390	5	100
RGD Between Giroux Road and Villeneuve Road NB	1700	5	310	5	100
RGD Between Giroux Road and Villeneuve Road SB	1700	5	310	5	100
RGD North of Villenueve Road NB	1200	5	225	5	100
RGD North of Villenueve Road SB	1200	5	225	5	100
Anthony Henday Drive Northbound	2310	16	595	14	100
Anthony Henday Drive Southhbound	2310	16	595	14	100
AHD NB to RGD NB	715	10	133	10	100
AHD SB to RGD NB	715	10	133	10	100
184 Street NB to RGD NB	715	10	133	10	100
RGD SB to AHD SB	715	10	133	10	100
RGD SB to 184 Street SB	715	10	133	10	100
RGD SB to AHD NB	715	10	133	10	100
137 Avenue	1650	10	306	10	60
137 Avenue to RGD Ramps	165	10	31	10	80
Riel Drive South of Levasseur Road	1320	3	242	3	60
Riel Drive South of 137 Avenue	960	3	176	3	60
McKenney Avenue	1200	5	225	5	60
McKenney Avenue to RGD Ramps	120	5	23	5	80
Giroux Road	540	5	100	5	60
Giroux Road Ramps	54	5	10	- 5	80
Villeneuve Road	1830	5	340	5	60
Villeneuve Road Ramps	183	5	34	5	80

Appendix II

THE ASSESSMENT OF ENVIRONMENTAL NOISE (GENERAL)

Sound Pressure Level

Sound pressure is initially measured in Pascal's (Pa). Humans can hear several orders of magnitude in sound pressure levels, so a more convenient scale is used. This scale is known as the decibel (dB) scale, named after Alexander Graham Bell (telephone guy). It is a base 10 logarithmic scale. When we measure pressure we typically measure the RMS sound pressure.

$$SPL = 10 \log_{10} \left[\frac{P_{\scriptscriptstyle RMS}^{2}}{P_{\scriptscriptstyle ref}^{2}} \right] = 20 \log_{10} \left[\frac{P_{\scriptscriptstyle RMS}}{P_{\scriptscriptstyle ref}} \right]$$

Where: SPL = Sound Pressure Level in dB

 P_{RMS} = Root Mean Square measured pressure (Pa)

 $P_{ref.}$ = Reference sound pressure level (P_{ref} = 2x10⁻⁵ Pa = 20 μ Pa)

This reference sound pressure level is an internationally agreed upon value. It represents the threshold of human hearing for "typical" people based on numerous testing. It is possible to have a threshold which is lower than $20\,\mu\text{Pa}$ which will result in negative dB levels. As such, zero dB does not mean there is no sound!

In general, a difference of 1-2 dB is the threshold for humans to notice that there has been a change in sound level. A difference of 3 dB (factor of 2 in acoustical energy) is perceptible and a change of 5 dB is strongly perceptible. A change of 10 dB is typically considered a factor of 2. This is quite remarkable when considering that 10 dB is 10-times the acoustical energy!

Frequency

The range of frequencies audible to the human ear ranges from approximately 20 Hz to 20 kHz. Within this range, the human ear does not hear equally at all frequencies. It is not very sensitive to low frequency sounds, is very sensitive to mid frequency sounds and is slightly less sensitive to high frequency sounds. Due to the large frequency range of human hearing, the entire spectrum is often divided into 31 bands, each known as a 1/3 octave band.

The internationally agreed upon center frequencies and upper and lower band limits for the 1/1 (whole octave) and 1/3 octave bands are as follows:

Lower Band Limit	Whole Octave Center Frequency	Upper Band Limit	Lower Band Limit	1/3 Octave Center Frequency	Upper Band Limit
11	16	22	14.1	16	17.8
		300	17.8	20	22.4
			22.4	25	28.2
22	31.5	44	28.2	31.5	35.5
			35.5	40	44.7
			44.7	50	56.2
44	63	88	56.2	63	70.8
		Nacae	70.8	80	89.1
			89.1	100	112
88	125	177	112	125	141
			141	160	178
			178	200	224
177	250	355	224	250	282
4790.70	100 CT (TO CT)(TO CT (TO CT)(TO CT (TO CT)(TO CT (TO CT (T	100000	282	315	355
			355	400	447
355	500	710	447	500	562
(73.5	.55.55.50	80,555	562	630	708
			708	800	891
710	1000	1420	891	1000	1122
	.,		1122	1250	1413
			1413	1600	1778
1420	2000	2840	1778	2000	2239
10000	JAN SA	OFFICE.	2239	2500	2818
			2818	3150	3548
2840	4000	5680	3548	4000	4467
-	1333	13.832	4467	5000	5623
			5623	6300	7079
5680	8000	11360	7079	8000	8913
0000	0000	1,000	8913	10000	11220
			11220	12500	14130
11360	16000	22720	14130	16000	17780
11000	10000	22120	17780	20000	22390

Human hearing is most sensitive at approximately 3500 Hz which corresponds to the ¼ wavelength of the ear canal (approximately 2.5 cm). Because of this range of sensitivity to various frequencies, we typically apply various weighting networks to the broadband measured sound to more appropriately account for the way humans hear. By default, the most common weighting network used is the so-called "A-weighting". It can be seen in the figure that the low frequency sounds are reduced significantly with the A-weighting.

Combination of Sounds

When combining multiple sound sources the general equation is:

$$\sum SPL_n = 10\log_{10} \left[\sum_{i=1}^n 10^{\frac{SPL_i}{10}} \right]$$

Examples:

- Two sources of 50 dB each add together to result in 53 dB.
- Three sources of 50 dB each add together to result in 55 dB.
- Ten sources of 50 dB each add together to result in 60 dB.
- One source of 50 dB added to another source of 40 dB results in 50.4 dB

It can be seen that, if multiple similar sources exist, removing or reducing only one source will have little effect.

31

Sound Level Measurements

Over the years a number of methods for measuring and describing environmental noise have been developed. The most widely used and accepted is the concept of the Energy Equivalent Sound Level (L_{eq}) which was developed in the US (1970's) to characterize noise levels near US Air-force bases. This is the level of a steady state sound which, for a given period of time, would contain the same energy as the time varying sound. The concept is that the same amount of annoyance occurs from a sound having a high level for a short period of time as from a sound at a lower level for a longer period of time. The L_{eq} is defined as:

$$L_{eq} = 10 \log_{10} \left[\frac{1}{T} \int_0^T 10^{\frac{dB}{10}} dT \right] = 10 \log_{10} \left[\frac{1}{T} \int_0^T \frac{P^2}{P_{ref}^2} dT \right]$$

We must specify the time period over which to measure the sound. i.e. 1-second, 10-seconds, 15-seconds, 1-minute, 1-day, etc. An L_{eq} is meaningless if there is no time period associated.

In general there a few very common L_{eq} sample durations which are used in describing environmental noise measurements. These include:

- L_{eq}24
- Measured over a 24-hour period
- LeaNight
- Measured over the night-time (typically 22:00 07:00)
- LegDay
- Measured over the day-time (typically 07:00 22:00)
- L_{DN}
- Same as Leq24 with a 10 dB penalty added to the night-time

Statistical Descriptor

Another method of conveying long term noise levels utilizes statistical descriptors. These are calculated from a cumulative distribution of the sound levels over the entire measurement duration and then determining the sound level at xx % of the time.

Figure 16.6 Statistically processed community noise showing histogram and cumulative distribution of A weighted sound levels.

Industrial Noise Control, Lewis Bell, Marcel Dekker, Inc. 1994

The most common statistical descriptors are:

L_{min} - minimum sound level measured

Lo1 - sound level that was exceeded only 1% of the time

L₁₀ - sound level that was exceeded only 10% of the time.

- Good measure of intermittent or intrusive noise

- Good measure of Traffic Noise

L₅₀ - sound level that was exceeded 50% of the time (arithmetic average)

Good to compare to L_{eq} to determine steadiness of noise

L₉₀ - sound level that was exceeded 90% of the time

- Good indicator of typical "ambient" noise levels

L₉₉ - sound level that was exceeded 99% of the time

Lmax - maximum sound level measured

These descriptors can be used to provide a more detailed analysis of the varying noise climate:

- If there is a large difference between the L_{eq} and the L₅₀ (L_{eq} can never be any lower than the L₅₀) then
 it can be surmised that one or more short duration, high level sound(s) occurred during the time
 period.
- If the gap between the L₁₀ and L₉₀ is relatively small (less than 15 20 dBA) then it can be surmised
 that the noise climate was relatively steady.

Sound Propagation

In order to understand sound propagation, the nature of the source must first be discussed. In general, there are three types of sources. These are known as 'point', 'line', and 'area'. This discussion will concentrate on point and line sources since area sources are much more complex and can usually be approximated by point sources at large distances.

Point Source

As sound radiates from a point source, it dissipates through geometric spreading. The basic relationship between the sound levels at two distances from a point source is:

$$\therefore SPL_1 - SPL_2 = 20\log_{10}\left(\frac{r_2}{r_1}\right)$$

Where: SPL_1 = sound pressure level at location 1, SPL_2 = sound pressure level at location 2 r_1 = distance from source to location 1, r_2 = distance from source to location 2

Thus, the reduction in sound pressure level for a point source radiating in a free field is 6 dB per doubling of distance. This relationship is independent of reflectivity factors provided they are always present. Note that this only considers geometric spreading and does not take into account atmospheric effects. Point sources still have some physical dimension associated with them, and typically do not radiate sound equally in all directions in all frequencies. The directionality of a source is also highly dependent on frequency. As frequency increases, directionality increases.

Examples (note no atmospheric absorption):

- A point source measuring 50 dB at 100m will be 44 dB at 200m.
- A point source measuring 50 dB at 100m will be 40.5 dB at 300m.
- A point source measuring 50 dB at 100m will be 38 dB at 400m.
- A point source measuring 50 dB at 100m will be 30 dB at 1000m.

Line Source

A line source is similar to a point source in that it dissipates through geometric spreading. The difference is that a line source is equivalent to a long line of many point sources. The basic relationship between the sound levels at two distances from a line source is:

$$SPL_1 - SPL_2 = 10\log_{10}\left(\frac{r_2}{r_1}\right)$$

The difference from the point source is that the '20' term in front of the 'log' is now only 10. Thus, the reduction in sound pressure level for a line source radiating in a free field is 3 dB per doubling of distance.

Examples (note no atmospheric absorption):

- A line source measuring 50 dB at 100m will be 47 dB at 200m.
- A line source measuring 50 dB at 100m will be 45 dB at 300m.
- A line source measuring 50 dB at 100m will be 34 dB at 400m.
- A line source measuring 50 dB at 100m will be 40 dB at 1000m.

Atmospheric Absorption

As sound transmits through a medium, there is an attenuation (or dissipation of acoustic energy) which can be attributed to three mechanisms:

- Viscous Effects Dissipation of acoustic energy due to fluid friction which results in thermodynamically irreversible propagation of sound.
- Heat Conduction Effects Heat transfer between high and low temperature regions in the wave which result in non-adiabatic propagation of the sound.
- 3) Inter Molecular Energy Interchanges Molecular energy relaxation effects which result in a time lag between changes in translational kinetic energy and the energy associated with rotation and vibration of the molecules.

The following table illustrates the attenuation coefficient of sound at standard pressure (101.325 kPa) in units of dB/100m.

Temperature	Relative Humidity			Frequen	cy (Hz)	63 0	
°C	(%)	125	250	500	1000	2000	4000
	20	0.06	0.18	0.37	0.64	1.40	4.40
30	50	0.03	0.10	0.33	0.75	1.30	2.50
	90	0.02	0.06	0.24	0.70	1.50	2.60
	20	0.07	0.15	0.27	0.62	1.90	6.70
20	50	0.04	0.12	0.28	0.50	1.00	2.80
	90	0.02	0.08	0.26	0.56	0.99	2.10
	20	0.06	0.11	0.29	0.94	3.20	9.00
10	50	0.04	0.11	0.20	0.41	1.20	4.20
	90	0.03	0.10	0.21	0.38	0.81	2.50
	20	0.05	0.15	0.50	1.60	3.70	5.70
0	50	0.04	0.08	0.19	0.60	2.10	6.70
	90	0.03	0.08	0.15	0.36	1.10	4.10

- As frequency increases, absorption increases
- As Relative Humidity increases, absorption decreases
- There is no direct relationship between absorption and temperature
- The net result of atmospheric absorption is to modify the sound propagation of a point source from 6 dB/doubling-of-distance to approximately 7 – 8 dB/doubling-of-distance (based on anecdotal experience)

Atmospheric Absorption at 10°C and 70% RH

Meteorological Effects

There are many meteorological factors which can affect how sound propagates over large distances. These various phenomena must be considered when trying to determine the relative impact of a noise source either after installation or during the design stage.

Wind

- Can greatly alter the noise climate away from a source depending on direction
- Sound levels downwind from a source can be increased due to refraction of sound back down towards the surface. This is due to the generally higher velocities as altitude increases.
- Sound levels upwind from a source can be decreased due to a "bending" of the sound away from the earth's surface.
- Sound level differences of ±10dB are possible depending on severity of wind and distance from source.
- Sound levels crosswind are generally not disturbed by an appreciable amount
- Wind tends to generate its own noise, however, and can provide a high degree of masking relative to a noise source of particular interest.

Temperature

- Temperature effects can be similar to wind effects
- Typically, the temperature is warmer at ground level than it is at higher elevations.
- If there is a very large difference between the ground temperature (very warm) and the air aloft (only
 a few hundred meters) then the transmitted sound refracts upward due to the changing speed of sound.
- If the air aloft is warmer than the ground temperature (known as an inversion) the resulting higher speed of sound aloft tends to refract the transmitted sound back down towards the ground. This essentially works on Snell's law of reflection and refraction.
- Temperature inversions typically happen early in the morning and are most common over large bodies of water or across river valleys.
- Sound level differences of ±10dB are possible depending on gradient of temperature and distance from source.

Rain

- Rain does not affect sound propagation by an appreciable amount unless it is very heavy
- The larger concern is the noise generated by the rain itself. A heavy rain striking the ground can cause a significant amount of highly broadband noise. The amount of noise generated is difficult to predict.
- Rain can also affect the output of various noise sources such as vehicle traffic.

Summary

- In general, these wind and temperature effects are difficult to predict
- Empirical models (based on measured data) have been generated to attempt to account for these
 effects.
- Environmental noise measurements must be conducted with these effects in mind. Sometimes it is
 desired to have completely calm conditions, other times a "worst case" of downwind noise levels are
 desired.

37

Topographical Effects

Similar to the various atmospheric effects outlined in the previous section, the effect of various geographical and vegetative factors must also be considered when examining the propagation of noise over large distances.

Topography

- One of the most important factors in sound propagation.
- Can provide a natural barrier between source and receiver (i.e. if berm or hill in between).
- Can provide a natural amplifier between source and receiver (i.e. large valley in between or hard reflective surface in between).
- Must look at location of topographical features relative to source and receiver to determine importance (i.e. small berm 1km away from source and 1km away from receiver will make negligible impact).

Grass

- Can be an effective absorber due to large area covered
- Only effective at low height above ground. Does not affect sound transmitted direct from source to receiver if there is line of sight.
- Typically less absorption than atmospheric absorption when there is line of sight.
- Approximate rule of thumb based on empirical data is:

$$A_g = 18\log_{10}(f) - 31$$
 $(dB/100m)$

Where: A_g is the absorption amount

Trees

- Provide absorption due to foliage
- Deciduous trees are essentially ineffective in the winter
- Absorption depends heavily on density and height of trees
- No data found on absorption of various kinds of trees
- Large spans of trees are required to obtain even minor amounts of sound reduction
- In many cases, trees can provide an effective visual barrier, even if the noise attenuation is negligible.

NOTE - $d_1 = d_1 + d_2$

For calculating us, and us, the curved path radius may be assumed to be 5 km.

Table A.1 — Attenuation of an octave band of noise due to propagation a distance d₁ through dense foliage

Propagation distance d ₁			Non	ninal midb	and freque	ney		
in	63	125	250	500	1 000	2 000	4 000	8 000
$10 \le d_t \le 20$	Atterwate 0	on, dili	1	31	-1	12	2	3
20 s.d. s. 200	Attenuati 0.02	on, dR/m	0.04	0.05	0.05	0,08	0.09	0.12

Tree/Foliage attenuation from ISO 9613-2:1996

Bodies of Water

- Large bodies of water can provide the opposite effect to grass and trees.
- Reflections caused by small incidence angles (grazing) can result in larger sound levels at great distances (increased reflectivity, Q).
- Typically air temperatures are warmer high aloft since air temperatures near water surface tend to be more constant. Result is a high probability of temperature inversion.
- Sound levels can "carry" much further.

Snow

- Covers the ground for approximately 1/2 of the year in northern climates.
- Can act as an absorber or reflector (and varying degrees in between).
- Freshly fallen snow can be quite absorptive.
- Snow which has been sitting for a while and hard packed due to wind can be quite reflective.
- Falling snow can be more absorptive than rain, but does not tend to produce its own noise.
- Snow can cover grass which might have provided some means of absorption.
- Typically sound propagates with less impedance in winter due to hard snow on ground and no foliage on trees/shrubs.

39

Appendix III

SOUND LEVELS OF FAMILIAR NOISE SOURCES

Used with Permission Obtained from EUB Guide 38: Noise Control Directive User Guide (November 1999)

Source ¹	Sound Level (dBA)
Bedroom of a country home	30
Soft whisper at 1.5 m	30
Quiet office or living room	40
Moderate rainfall	50
Inside average urban home	50
Quiet street	50
Normal conversation at 1 m	60
Noisy office	60
Noisy restaurant	70
Highway traffic at 15 m	75
Loud singing at 1 m	75
Tractor at 15 m	78-95
Busy traffic intersection	80
Electric typewriter	80
Bus or heavy truck at 15 m	88-94
Jackhammer	88-98
Loud shout	90
Freight train at 15 m	95
Modified motorcycle	95
Jet taking off at 600 m	100
Amplified rock music	110
Jet taking off at 60 m	120
Air-raid siren	130

¹ Cottrell, Tom, 1980, Noise in Alberta, Table 1, p.8, ECA80 - 16/1B4 (Edmonton: Environment Council of Alberta).

SOUND LEVELS GENERATED BY COMMON APPLIANCES

Used with Permission Obtained from EUB Guide 38: Noise Control Directive User Guide (November 1999)

Source1 Sound level at 3 feet (dBA) 38-45 34-53 Electric heater 47 50 48-57 41-54 51-65 50-67 47-68 62 58-64 48-73 59-71 60-70 59-75 65-75 Electric knife sharpener 72 70-74 65-80 65-85 75-79 69-90 81 64-95 85 80-90

¹ Reif, Z. F., and Vermeulen, P. J., 1979, "Noise from domestic appliances, construction, and industry," Table 1, p.166, in Jones, H. W., ed., *Noise in the Human Environment*, vol. 2, ECA79-SP/1 (Edmonton: Environment Council of Alberta).

Appendix H Cost Estimates

Cost Estimates

The following section discusses the costs related to constructing the various types of roadway proposed for Ray Gibbon Drive.

Arterial Roadway Costs

Originally Ray Gibbon Drive was planned as a 2-lane arterial. The costs shown in the following tables represent the cost to build this facility, without modifications to accommodate the future freeway. The assumptions for each stage are listed below.

Stage 1 (Existing 137 Avenue to 8+800)

- > 45m ROW and 2 lane construction, on existing alignment
- Based on actual contract costs
- Add Riel Pond
- Sewer for 4 lanes
- Bridge costs for only NB lanes (Subtract additional pier and piling costs from tendered cost)
- North Pond cost as constructed
- Pavement Structure RG Drive.

Stage 2 (8+800 to 10+400)

- 45m ROW and 2 lane construction, on arterial alignment (see Exhibit 3)
- Based on actual contract costs
- Simple intersection at McKenney
- Stage 2 Pond will be assumed to be 40% of final costs (good for stage 3 base)
- Assume urban x-section full length
- Pavement Structure RG Drive
- Storm Sewer for 4 lanes no grade separation with accommodate run off from portion of stage 3
- Rail Crossing at grade.

Stage 3 (10+400 to 12+500)

- 22.5m ROW and 2 lane construction, on arterial alignment (see Exhibit 3)
- 2008 construction prices
- Storm Sewer will be for 2 lanes and 22.5m ROW will tie into Stage 2 system and pond (will drain everything from Villeneuve south to stage 2 pond)
- Assume Urban x-section full length
- Pavement Structure RG Drive.

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario I Stage I (137 Avenue to Station 8+800) 2 Lanes - Actual Contract Prices

Thereoff Eccavation and Native Backliii 300mm Sm Sign Approx					22.5m ROW	WC	SA SA	45.0m ROW	WO		78.0m ROW	WO
Native Backfill 300mm Stm \$115.00 58 m \$6.670 0 m \$50 Native Backfill 375mm Stm \$117.00 120 m \$14,040 0 m \$50 Native Backfill 525mm Stm \$1120.79 230 m \$27,782 0 m \$50 Native Backfill 525mm Stm \$120.79 230 m \$27,782 0 m \$50 Native Backfill 675mm Stm \$122.60 896 m \$110.262 0 m \$50 Native Backfill 675mm Stm \$127.60 890 m \$75.284 0 m \$50 Native Backfill 675mm Stm \$127.60 890 m \$75.284 0 m \$50 Native Backfill 675mm Stm \$127.60 890 m \$75.284 0 m \$50 Native Backfill 1050mm \$123.64 244.5 m \$51.04 0 m \$50 Native Backfill 1050mm \$152.60 m \$51.04 m <td< th=""><th>tem No.</th><th>Description</th><th>Unit</th><th>Approx. Quantity</th><th>Conit</th><th>Amount</th><th>Approx. Quantity</th><th>Cont</th><th></th><th>Approx. Quantity</th><th>Unit</th><th>Amount</th></td<>	tem No.	Description	Unit	Approx. Quantity	Conit	Amount	Approx. Quantity	Cont		Approx. Quantity	Unit	Amount
Trench Excavation and Native Backfill 375mm Stm \$115.00 58 mm \$56,670 0 - mm \$50 Trench Excavation and Native Backfill 375mm Stm \$112.00 120 mm \$14,040 0 mm \$50 2.0-3.0 m depth	: Storm	Sewer And Drainage										
Trenche Excavation and Native Backfill \$75mm Stm \$117.00 120 m \$140.400 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$1120.79 230 m \$517.82 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$1120.79 230 m \$517.82 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$1120.60 896 m \$510.262 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$112.60 890 m \$510.262 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$112.60 m \$510.822 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$112.60 m \$100.922 m \$510.822 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$137.64 424.5 m \$510.822 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$137.64 424.5 m \$510.822 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$215.00 m \$510.822 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$215.00 m \$510.822 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$215.00 m \$510.822 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$215.00 m \$510.822 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$215.00 m \$510.802 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$215.00 m \$210.802 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$215.00 m \$210.802 0 m \$50 Trenche Excavation and Native Backfill \$25mm Stm \$210.00 m \$210.00 m \$20 Trenche Excavation and Native Backfill \$25mm Stm \$210.00 m \$21.00 m \$20 Trenche Excavation and Native Backfill \$25mm Stm \$210.80 m \$21.20 0 m \$20 Trenche Excavation and Native Backfill \$25mm Stm \$21.20 m \$21.20 0	1.01	on and Native Backfill 30	\$115.00	8	E	\$6.670	0	ε	S	0	ε	8
Trench Eucavaldon and Native Backfill S26mm Stm \$120.79 230 mm \$27,782 0 mm \$50 mm \$20,00m degth \$10.00m degth \$120.70 \$10.00m degth \$10.00m degth \$120.00m degth \$120.	1.02	on and Native Backfill 375mm	\$117.00	120	ε	\$14.040	o	Ε	95			S
Trench Excavation and Native Backfill 600mm St St St St St St St St	1.03	on and Native Backfill 450mm	\$120.79	230	E	\$27.782		E	So		ε	9
Trench Excavation and Native Backfill 675mm Stm 5124.52 190 m 5723,659 0 m 572,659 0 m 550,000 depth) Trench Excavation and Native Backfill 675mm Stm 5127.60 590 m 575,284 0 m 50 m	1.04	on and Native Backfill 525mm	\$123.06	896	8	\$110.262	0	8	So	0	ε	os
Trench Excavalion and Native Backfill 675mm Str. \$127.60 \$90 m \$75,294 0 m \$50 (2.0-3.0 m depth)	1.05	Trench Excavation and Native Backfill 600mm. Stm (2.0-3.0m depth)	\$124.52	190	ε	\$23,659	.0	Ε	So	0	ε	S
Trench Excavation and Native Backfill 900mm Stm \$129,67 840 m \$108,923 0 m \$0 (2.0-3.0m depth) Trench Excavation and Native Backfill 900mm Stm \$137.64 424.5 m \$58,428 0 m \$0 (2.0-3.0m depth) Trench Excavation and Native Backfill 1050mm \$157.00 22 m \$21,44 0 m \$0 Trench Excavation and Native Backfill 1050mm \$150.00 120 m \$21,44 0 m \$0 Trench Excavation and Native Backfill 1050mm \$150.00 120 m \$21,44 0 m \$0 300mm Class IV Concrete Storm Sewer \$150.00 120 m \$150.00 m \$0 450mm Class IV Concrete Storm Sewer \$14,68 590 m \$15,533 0 m \$0 675mm Class IV Concrete Storm Sewer \$14,68 590 m \$15,533 0 m \$0 1050mm Class IV Concrete Storm Sewer \$14,68 590 m \$15,641 0 m <td>1.06</td> <td>on and Native Backfill 675mm</td> <td>\$127.60</td> <td>590</td> <td>ε</td> <td>\$75,284</td> <td>0</td> <td>Ε</td> <td>So</td> <td>0</td> <td>Ε</td> <td>S</td>	1.06	on and Native Backfill 675mm	\$127.60	590	ε	\$75,284	0	Ε	So	0	Ε	S
Trench Excavation and Native Backfill 900mm Stm \$137.64 424.5 m \$58,428 0 m \$50 (2.0-3.0m depth) Trench Excavation and Native Backfill 1050mm \$157.00 22 m \$23,454 0 m \$50 300mm Class IV Concrete Storm Sewer \$150.00 120 m \$21,04 0 m \$50 300mm Class IV Concrete Storm Sewer \$150.00 220 m \$21,04 0 m \$50 450mm Class IV Concrete Storm Sewer \$150.00 220 m \$21,04 0 m \$50 50mm Class IV Concrete Storm Sewer \$105.86 190 m \$20,113 0 m \$50 60mm Class IV Concrete Storm Sewer \$105.86 190 m \$20,113 0 m \$50 60mm Class IV Concrete Storm Sewer \$105.86 190 m \$13,224.4 0 m \$50 1050mm Class IV Concrete Storm Sewer \$128.52 479 m \$13,232.44 0 m \$50	1.07	on and Native Backfill 75	\$129.67	840	ε	\$108.923	0	Ε	So	0	ε	SS
Trench Excavation and Native Backfill 1050mm \$157.00 22 m \$3,454 0 m \$0 350mm (2ass IV Concrete Storm Sewer 5150.00 \$150.00 120 m \$15,410 0 m \$0 450mm Class IV Concrete Storm Sewer 5150.00 \$150.00 230 m \$15,533 0 m \$0 450mm Class IV Concrete Storm Sewer 510.00 \$10,586 190 m \$15,533 0 m \$0 600mm Class IV Concrete Storm Sewer 510.00 \$11,468 \$90 m \$15,533 0 m \$0 600mm Class IV Concrete Storm Sewer 510.00 \$11,468 \$90 m \$10,566 0 m \$0 600mm Class IV Concrete Storm Sewer 510.00 \$10,000 \$10,000 \$10,000 0 m \$10,000 0 0 m \$10,000 0	1.08	on and Native Backfill 90	\$137.64	424.5	Ε	\$58,428	0	Ε	So	0	ε	S
Strict Control of Strict	9	d Native Backfill 10	6457.00	99	E	63 464	c		5			S
375rm Class IV Concrete Storm Sewer \$15.00 T20 m \$18,000 0 m \$0 450mm Class IV Concrete Storm Sewer \$67,00 230 m \$15,410 0 m \$0 6226mm Class IV Concrete Storm Sewer \$10,586 m \$15,633 0 m \$0 600mm Class IV Concrete Storm Sewer \$114,68 590 m \$156,382 0 m \$0 750mm Class IV Concrete Storm Sewer \$114,68 590 m \$158,382 0 m \$0 750mm Class IV Concrete Storm Sewer \$186,55 840 m \$158,382 0 m \$0 900mm Class IV Concrete Storm Sewer \$186,55 840 m \$158,887 0 m \$0 1050mm Class IV Concrete Storm Sewer \$143,123 22 m \$143,87 0 m \$0 1050mm Class IV Concrete Storm Sewer \$1,297,94 128 v.m. \$156,136 0 m \$0 1050mm Class IV Concrete Storm Sewer <td< td=""><td>1.10</td><td>300mm Class IV Concrete Storm Sewer</td><td>\$36.27</td><td>88</td><td>ε</td><td>\$2.104</td><td>0</td><td>ε</td><td>\$0</td><td>0</td><td>8</td><td>So</td></td<>	1.10	300mm Class IV Concrete Storm Sewer	\$36.27	88	ε	\$2.104	0	ε	\$0	0	8	So
450rm Class IV Concrete Storm Sewer \$67,00 230 m \$15,410 0 m \$50 525mm Class IV Concrete Storm Sewer \$84,30 896 m \$75,533 0 m \$0 600mm Class IV Concrete Storm Sewer \$105,86 190 m \$20,113 0 m \$0 675mm Class IV Concrete Storm Sewer \$105,86 840 m \$67,661 0 m \$0 750mm Class IV Concrete Storm Sewer \$188,55 840 m \$158,344 0 m \$0 1050mm Class IV Concrete Storm Sewer \$226,77 424,5 m \$13,344 0 m \$0 1050mm Class IV Concrete Catchbasin Lead \$128,56 128 m \$17,373 0 m \$0 1200mm Class IV Concrete Catchbasin Lead \$128,56 128 m \$17,373 0 m \$0 1200mm Class IV Concrete Storm Sewer \$1,287,34 128 v.m. \$16,136 0 v.m. \$0 1200mm Class V Concre	1.11	375mm Class IV Concrete Storm Sewer	\$150.00	120	ε	\$18,000	0	ε	\$0	0	E	\$0
625mm Class IV Concrete Storm Sewer \$84,30 896 m \$75,533 0 m \$50 600mm Class IV Concrete Storm Sewer \$105,86 190 m \$20,113 0 m \$50 675mm Class IV Concrete Storm Sewer \$144,68 590 m \$50,113 0 m \$50 750mm Class IV Concrete Storm Sewer \$188,55 840 m \$13,244 0 m \$50 900mm Class IV Concrete Storm Sewer \$431,23 22 m \$113,244 0 m \$0 1050mm Class IV Concrete Storm Sewer \$431,23 22 m \$17,373 0 m \$0 1050mm Class IV Concrete Storm Sewer \$1,29,48 128 v.m. \$17,373 0 m \$0 1200mm Class IV Concrete Storm Sewer \$1,29,48 128 v.m. \$16,136 0 v.m. \$0 1200mm Class IV Concrete Storm Sewer \$1,29,48 10 v.m. \$16,136 0 v.m. \$0 1200mm Class V Concr	1.12	450mm Class IV Concrete Storm Sewer	\$67.00	230	ε	\$15,410	0	ш	So	0	ε	05
600mm Class IV Concrete Storm Sewer \$105.86 190 m \$20,113 0 m \$0 675mm Class IV Concrete Storm Sewer \$114.68 590 m \$67,661 0 m \$0 750mm Class IV Concrete Storm Sewer \$188,55 840 m \$158,382 0 m \$0 900mm Class IV Concrete Storm Sewer \$2266.77 424.5 m \$113,244 0 m \$0 1050mm Class IV Concrete Storm Sewer \$451,23 22 m \$173,445 0 m \$0 1050mm Class IV Concrete Storm Sewer \$36,27 479 m \$17,445 0 m \$0 1200mm Class IV Concrete Storm Sewer \$128,67 479 m \$17,445 0 m \$0 1200mm Class IV Concrete Storm Sewer \$1,281,733 0 m \$10 m \$0 1200mm Class IV Concrete Stores \$1,294,46 0 0 0 0 0 0 0 1200mm Clast Concrete Stores \$1,	1.13	525mm Class IV Concrete Storm Sewer	\$84,30	968	m	\$75,533	0	E	0\$	0	ε	\$0
675mm Class IV Concrete Storm Sewer \$114.68 590 m \$67,661 0 m \$0 750mm Class IV Concrete Storm Sewer \$188.55 840 m \$158,382 0 m \$0 900mm Class IV Concrete Storm Sewer \$2286.77 424.5 m \$133.244 0 m \$0 1050mm Class IV Concrete Storm Sewer \$36.27 479 m \$173.733 0 m \$0 1050mm Class IV Concrete Catchbasin Lead \$36.27 479 m \$17.273.73 0 m \$0 1200mm Class IV Concrete Catchbasin Lead \$1.297.94 128 v.m. \$166,136 0 v.m. \$0 1200mm Class IV Concrete Catchbasin Lead \$1.228.64 128 v.m. \$166,136 0 v.m. \$0 1200mm Clast MH \$1.200mm Clast MH \$1.228.64 103.5 v.m. \$166,136 0 v.m. \$0 450mm Flared End cw Galvanized Bar Screen \$3,246,12 3 No \$10,439 0 No \$0	1.14	600mm Class IV Concrete Storm Sewer	\$105.86	190	ш	\$20,113	0	ε	20	0	Ε	0\$
750mm Class IV Concrete Storm Sewer \$188.55 840 m \$158.382 0 m \$0 900mm Class IV Concrete Storm Sewer \$226.77 424.5 m \$113.244 0 m \$0 1050mm Class IV Concrete Storm Sewer \$226.77 479 m \$113.244 0 m \$0 300mm Class IV Concrete Storm Sewer \$36.27 479 m \$11.324 0 m \$0 1200mm Class IV Concrete Catchbasin Lead \$1.297.94 128 v.m. \$166.136 0 v.m. \$0 1200mm Clastchbasin \$1.297.94 128 v.m. \$17.645 0 v.m. \$0 1200mm Clatchbasin \$1.228.64 103.5 v.m. \$127.164 0 v.m. \$0 450mm Flared End cw Galvanized Bar Screen \$3.282.48 3 No \$10.38 0 No \$0 556mm Flared End cw Galvanized Bar Screen \$5.204.34 2 No \$10.409 0 No \$0 1050mm Flared End cw Ga	1.15	675mm Class IV Concrete Storm Sewer	\$114.68	280	ш	\$67,661	0	E	05	0	ε	\$0
900mm Class IV Concrete Storm Sewer \$2266.77 424.5 m \$113.244 0 m \$0 1050mm Class IV Concrete Storm Sewer \$431.23 22 m \$9.487 0 m \$0 300mm Class IV Concrete Catchbasin Lead \$35.27 479 m \$17,373 0 m \$0 1200mm Manhole \$1,297.94 128 v.m. \$166.136 0 v.m. \$0 900mm Clathide \$1,298.64 198 v.m. \$156.136 0 v.m. \$0 1200mm Clathide \$1,228.64 103.5 v.m. \$127,164 0 v.m. \$0 450mm Flared End c/w Galvanized Bar Screen \$3,282.48 3 No \$1,338 0 No \$0 555mm Flared End c/w Galvanized Bar Screen \$3,738.82 2 No \$1,478 0 No \$0 900mm Flared End c/w Galvanized Bar Screen \$5,204.34 2 No \$1,478 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen <td>1.16</td> <td>750mm Class IV Concrete Storm Sewer</td> <td>\$188.55</td> <td>840</td> <td>ш</td> <td>\$158,382</td> <td>0</td> <td>E</td> <td>80</td> <td>0</td> <td>ε</td> <td>0\$</td>	1.16	750mm Class IV Concrete Storm Sewer	\$188.55	840	ш	\$158,382	0	E	80	0	ε	0\$
1050mm Class IV Concrete Storm Sewer \$431.23 22 m \$9.487 0 m \$0 300mm Class IV Concrete Catchbasin Lead \$36.27 479 m \$17,373 0 m \$0 1200mm Class V Concrete Catchbasin Lead \$1,297.34 128 v.m. \$166,136 0 v.m. \$0 900mm Clatchbasin \$1,297.34 128 v.m. \$127,164 0 v.m. \$0 1200mm Clatchbasin \$1,228.64 103.5 v.m. \$127,164 0 v.m. \$0 300mm Flared End c/w Galvanized Bar Screen \$3,282.48 3 No \$10,338 0 No \$0 500mm Flared End c/w Galvanized Bar Screen \$5,204.34 2 No \$10,409 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6,066.00 1 No \$6,066 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6,066.00 1 No \$6,066 0 No \$0 1050mm	1.17	900mm Class IV Concrete Storm Sewer	\$266.77	424.5	ш	\$113,244	0	ш	0\$	0	E	80
300mm Class V Concrete Catchbasin Lead \$36.27 479 m \$17,373 0 m \$0 1200mm Manhole \$1297.94 128 v.m. \$166,136 0 v.m. \$0 900mm Catchbasin \$1294.86 28 No \$57,845 0 No \$0 1200mm Catchbasin \$1228.64 103.5 v.m. \$127,164 0 v.m. \$0 300mm Flared End c/w Galvanized Bar Screen \$3,282.48 3 No \$10,338 0 No \$0 550mm Flared End c/w Galvanized Bar Screen \$3,746.12 3 No \$7,478 0 No \$0 500mm Flared End c/w Galvanized Bar Screen \$5,204.34 2 No \$10,409 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6,066.00 1 No \$6,066 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6,066.00 1 No \$6,066 0 No \$0 1050mm Flared End c/w Galvanized Ba	1.18	1050mm Class IV Concrete Storm Sewer	\$431.23	22	ш	\$9,487	0	8	\$0	0	ε	\$0
1200mm Manhole \$1.297.94 128 v.m. \$166,136 0 v.m. \$0 900mm Catchbasin \$1.994.66 29 No \$57,845 0 No \$0 1200mm Catchbasin \$1.228.64 103.5 v.m. \$127,164 0 No \$0 300mm Flared End c/w Galvanized Bar Screen \$3.282.48 3 No \$10,338 0 No \$0 \$25mm Flared End c/w Galvanized Bar Screen \$3.738.22 2 No \$7,478 0 No \$0 900mm Flared End c/w Galvanized Bar Screen \$5.204.34 2 No \$10,409 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6.066.00 1 No \$6.066 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6.066.00 1 No \$6.066 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6.066.00 1 No \$15.580 0 No \$0	1.19	300mm Class V Concrete Catchbasin Lead	\$36.27	479	m	\$17,373	0	E	SO	0	ε	80
900mm Catchbasin \$1,994.66 29 No \$57,845 0 No \$0 1200mm CBMH \$1,228.64 103.5 v.m. \$127,164 0 v.m. \$0 300mm Flared End c/w Galvanized Bar Screen \$3,282.48 3 No \$9,847 0 No \$0 450mm Flared End c/w Galvanized Bar Screen \$3,446.12 3 No \$10,338 0 No \$0 900mm Flared End c/w Galvanized Bar Screen \$5,204.34 2 No \$10,408 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6,066.00 1 No \$6,066 0 No \$0 NF-80 Frame and Cover \$486.86 32 No \$15,580 0 No \$0	1.20	1200mm Manhole	\$1,297.94	128	v.m.	\$166,136	0	v.m.	\$0	0	v.m.	S
1200mm CB/MH 51,228.64 103.5 v.m. \$127,164 0 v.m. \$0 300mm Flared End c/w Galvanized Bar Screen \$3,282.48 3 No \$9,847 0 No \$0 450mm Flared End c/w Galvanized Bar Screen \$3,746.12 3 No \$10,338 0 No \$0 555mm Flared End c/w Galvanized Bar Screen \$3,738.82 2 No \$7,478 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$5,204.34 2 No \$10,409 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6,066.00 1 No \$6,066 0 No \$0 NF-80 Frame and Cover \$486.86 32 No \$15,580 0 No \$0	1.21	900mm Catchbasin	\$1,994.66	29	No	\$57,845	0	No	0\$	0	8	05
300mm Flared End c/w Galvanized Bar Screen \$3.282.48 3 No \$9.847 0 No \$0 450mm Flared End c/w Galvanized Bar Screen \$3.446.12 3 No \$10,338 0 No \$0 525mm Flared End c/w Galvanized Bar Screen \$3,738.82 2 No \$7,478 0 No \$0 900mm Flared End c/w Galvanized Bar Screen \$5,204.34 2 No \$10,409 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6,066.00 1 No \$6,066 0 No \$0 NF-80 Frame and Cover \$486.86 32 No \$15,580 0 No \$0	1.22	1200mm CB/MH	\$1,228.64	103.5	v.m.	\$127,164	0	v.m.	80	0	v.m.	So
450mm Flared End c/w Galvanized Bar Screen \$3,446.12 3 No \$10,338 0 No \$0 S0 S25mm Flared End c/w Galvanized Bar Screen \$5,204.34 2 No \$7,478 0 No \$0 S0 S0 S0 S00mm Flared End c/w Galvanized Bar Screen \$6,066.00 1 No \$6,066 0 No \$0 No	1.23	300mm Flared End c/w Galvanized Bar Screen	\$3,282.48	3	No	\$9,847	0	No	80	0	No	0\$
525mm Flared End c/w Galvanized Bar Screen \$3,738.82 2 No \$7,478 0 No \$0 900mm Flared End c/w Galvanized Bar Screen \$5,204.34 2 No \$10,409 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6,066.00 1 No \$6,066 0 No \$0 NF-80 Frame and Cover \$486.86 32 No \$15,580 0 No \$0	1.24		\$3,446.12	3	No	\$10,338	0	No	\$0	0	No	0\$
900mm Flared End c/w Galvanized Bar Screen \$5.204.34 2 No \$10,409 0 No \$0 1050mm Flared End c/w Galvanized Bar Screen \$6.066.00 1 No \$6,066 0 No \$0 NF-80 Frame and Cover \$486.86 32 No \$15,580 0 No \$0	1.25	525mm Flared End c/w Galvanized Bar Screen	\$3,738.82	2	No	\$7,478	0	No	08	0	No	0\$
1050mm Flared End clw Galvanized Bar Screen \$6.066.00 1 No \$6.066 0 No \$0 NF-80 Frame and Cover \$486.86 32 No \$15.580 0 No \$0	1.26	900mm Flared End c/w Galvanized Bar Screen	\$5,204.34	2	No	\$10,409	0	No	20	0	No	\$0
NF-80 Frame and Cover \$486.86 32 No \$15,580 0 No \$0	1.27	Galvanized Bar	\$6,066,00	1	No	\$6,066	0	No.	80	0	No	\$0
	1.28	NF-80 Frame and Cover	\$486.86	32	No	\$15,580	0	No	80	0	No	0\$

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario I Stage I (137 Avenue to Station 8+800) 2 Lanes - Actual Contract Prices

				22.5m ROW	WC		45.0m ROW	WO		78.0m ROW	WO
tem No.	Description	Unit	Approx. Quantity	Unit	Amount	Approx. Quantity	Unit	Amount	Approx.	Unit	Amount
1.29	F-51 Frame and Cover	\$806.54	74	No	\$59,684	0	No	So	0	No.	80
1.30	Gabion Matting (0.3m thick) North Pond	\$95.36	626	m2	\$59,695	0	m2	So	0	m2	\$0
1.31	Riel Pond Intercell Weir Structure	\$7,295.00	25	No.	\$182,375	0	No.	So	0	No.	\$0
1.32	North Pond Outlet Control Structure	\$43,124.44	1	No.	\$43,124	0	No.	So	0	No.	So
1.33	North Pond Isolation Structure	\$15,005,99	1	No.	\$15,006	-0	No.	So	0	No.	80
1.34	600mm CSP Culvert	\$162.10	150	E	\$24,315	0	Ε	So	0	Ε	So
1.35	600mm CSP Wildlife Culvert	\$151.54	122	E	\$18,488	0	E	So	0	ε	20
1.36	500mm CSP Wildlife Culvert	\$136.14	118	ε	\$16,065	0	8	So	0	ε	So
1.37	900mm CSP Wildlife Culvert	\$221.76	134	ш	\$29,716	0	ε	So	0	E	So
1.38	STC300 Stormceptor	\$18,500.00	1	No.	\$18,500	0	No.	80	0	No.	So
1.39	STC750 Stormceptor	\$20,454.97	1.	No.	\$20,455	0	No.	\$0	0	No.	So
1.40	STC4000 Stormceptor	\$65,108.98	2	No.	\$130,218	0	No.	20	0	No	\$0
		Total Part 1:			\$1,954,313			80			05

Earth	2: Earthworks										
2.01	Common Excavation of Roadway - South Side	\$4.56	00096	m3	\$437,760	64000	m3	- \$291,840	0	m3	So
2.02	Common Excavation - North Storm Pond	\$4.83	30363	m3	\$146,653	0	m3	os S	0	m3	So
2.03	Common Excavation from Stockpile at Hogan Road - North Side	\$5.22	10300	m3	\$53,766	0	m3	80	0	EE.	08
2.04	Contractor Supplied Borrow Excavation - North Side	\$11.57	54000	m3	\$624,780	36000	m3	\$416,520	0	EE SE	So
2.05	Topsoil Strip and Stockpile -North Side	\$2.68	8437.5	m3	\$22,613	8437.5	m3	\$22,613	0	m3	So
2.06	Topsoil Strip and Stockpile - South Side	\$2.56	5850	m3	\$14,976	5850	m3	\$14,976	0	m3	So
2.06	Place Seeding and 150mm Topsoil	\$1.44	53031.5	,E	\$76,365	53031.5	E.	\$76,365	0	,E	80
2.07	Rock Rip Rap	\$69.66	2201	m2	\$153,322	0	m2	So	0	m2	\$0
2.07	Woven Filter Fabric	\$5.43	2201	m2	\$11,951	0	m2	So	0	m2	20
2.08	Load, Hauf and Place Concrete Rubble to Riel Pond	\$9.47	525	m3	\$4,972	0	m3	98	0	EE.	So
2.08	Bi- Axle Geogrid	\$5.43	10020	m3	\$54,409	0	m3	80	0	m3	20
2.09	Silt Curtain	\$72.61	330	E	\$23,961	0	æ	\$0	0	ε	So
5.09	Sit Fence	\$5.97	292	m	\$3,385	0	æ	80	0	Ε	05
		Total Part 2:			\$1.628.913			\$822.314			08

Logic	coadways and concrete - New Construction										
3.01	200mm Curb and 500mm Gutter	\$65.92	6180	ε	\$407.386	0	E	\$0	0	Ε	80
3.02	300mm Cement Stabilized Subgrade (22kg/m2)	\$11.33	25721	m bs	\$291,419	0	m bs	\$0	0	sq m	So
3.03	400mm of 20mm Granular Base Course	\$23.43	28255	m bs	\$662,015	0	m bg	80	0	m bs	80
3.04	130mm of 25mm Asphalt Base	\$25.18	20230	m ps	\$509,391	0	m bs	\$0	0	m ps	So
3.05	50mm of 12.5mm Asphalt Base	\$11.56	20230	m bs	\$233,859	0	m bs	80	0	m bs	80
3.06	50mm of 12.5mm Asphalt Surface	\$21.25	20230	m ps	\$429,888	0	m bs	20	0	m bs	80
3.07	3.0m Asphalt Walkway	\$40,010.85	1	No.	\$40,011	0	No.	So	0	No	So
3.08	Increase Gutter Depth	\$46,746.81	-	No.	\$46,747	0	No.	\$0	0	No.	80
		Total Part 3:			\$2.620.715			80			60

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario I Stage I (137 Avenue to Station 8+800) 2 Lanes - Actual Contract Prices

				22.5m ROW	MO	,	45.0m ROW	WO		78.0m ROW	WC
Item No.	Description	Unit	Approx. Quantity	Cult	Amount	Approx. Quantity		Amount	Approx. Quantity	Unit	Amount
: Sturg	4: Sturgeon River Bridge										
4.0	4.01 Sturgeon River Bridge	\$4,570,206.33		No.	\$4,570,206	0	No.	So	0	No.	20
1		Total Part 4:			\$4,570,206			\$0			\$0
Land	5: Landscaping										
5.01	Wet Meadow Mix Seeding on 150mm Tobsoil	\$1.89	2957	m2	85.589	0	cm2	US	0	Cim	03
5.02	Planting Bed Construction	\$4.32	7364	m.ps	\$31,812	0	m.ps	So	0	SG.m	So
5.03	Shredded Wood Mulch	\$4.32	7364	m.ps	\$31,812	0	m.ps	\$0	0	m.ps	80
5.04	Caliper Trees - Supply & Install	\$232.20	256	each	\$59,443	0	each	\$0	0	each	80
5.05	Containerized Trees - Supply & Install	\$28.62	2565	each	\$73,410	0	each	SO	0	each	80
5.06	Containerized Shrubs - Supply & Install	\$12.42	2100	each	\$26,082	0	each	\$0	0	each	80
5.07	Emergent Plants - Supply & Install	\$10.80	40	each	\$432	0	each	80	0	each	\$0
5.08	Live Willow Stakes - Supply & Install	\$10.80	300	each	\$3,240	0	each	\$0	0	each	\$0
5.09	Landscape Maintenance	\$82,080.00	-	No.	\$82,080	0	No.	\$0	0	No	80
5.10	North Pond Landscape	\$40,717.35		No.	\$40,717	0	No.	80	0	No.	80
		Total Part 5:		-	\$354,619			\$0		0.00	\$0
Paver	6: Pavement Markings and Signing - Supply and Install	lie:									
6.01	Misc. Charges for Signing and Marking	\$274,800.00	1	No.	\$274.800	0	No.	80	0	No.	80
		Total Part 6:			\$274,800		1	\$0			80
Stree	7: Street Lighting						ŀ				
7.01	Supply and Install Street Lichting	\$300,000,00		No	\$300.000	0	No	\$0	0	No	VS.
		Total Part 7:			\$300,000			\$0			0\$
8: Land Cost	Cost										
8.01	Land Pruchases	\$1,717,000.00	0.29	No.	\$496,000	0.29	No.	\$496,000	0.42	No.	\$725,000
		Total Part 8:			\$496,000			\$496,000			\$725,000
Riel P	9: Riel Pond Wetland Construction										
9.01	Riel Pond Wetland Construction Cost	\$1,372,400.00	1	No.	\$1,372,400	0	No.	So	0	No.	20
9.02	Second Outfall	\$180,000.00	1	No.	\$180,000	0	No.	80	0	No.	80
9.03	Landfill Charges	\$320,000.00		No.	\$320,000	0	No.	20	0	No.	80
	117	Total Part 9:			\$1,872,400			20			0\$

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario | Stage | (137 Avenue to Station 8+800)

65
운
2
trac
Con
ual
Aci
- 50
Ę
N

				22.5m ROW	WC		45.0m ROW	WC		78.0m ROW	WO
Item No.	Description	Unit	Approx. Quantity	Unit	Amount	Approx. Quantity	Unit	Amount	Approx. Quantity	Chit	Amount
io: Utility	10: Utility Relocation										
10.01	Alta Link Power line Relocation	\$53,100.00		No.	\$53,100	0	No.	80	0	No.	\$0
10000		Total Part 10:			\$53,100			80			0\$
1: Engin	11: Engineering Cost										
	ElA Process	\$540,000.00	-	No.	\$540,000	0	No.	80	0	No	\$0
	Spencer Environmental	\$265,100.00	0.8	No.	\$212,080	0.2	No.	\$53,020	0	No.	80
11.03	ISL Engineering	\$2,400,000.00		No.	\$1,920,000	0.2	No.	\$480,000	0	No	20
11.04	Spencer Monitoring	\$240,000.00		No.	\$192,000	0.5	No.	\$48,000	0	No.	80
		Total Part 11:			\$2,864,080			\$581,020			0\$
	Cost Summary			22.5m ROW	wo		45m ROW	W		78m ROW	W
	1: Storm Sewer And Drainage 2: Earthworks				\$1,954,313			\$0			8 8
	3: Roadways and Concrete - New Construction	truction			\$2,620,715			03			0\$
	4: Sturgeon River Bridge				\$4,570,206			80			0\$
	5: Landscaping				\$354,619			\$0			0\$
	6: Pavement Markings and Signing - S	 Supply and Install 			\$274,800			20			\$0
	7: Street Lighting				\$300,000			80			0\$
	8: Land Cost				\$496,000			\$496,000			\$725,000
	9: Riel Pond Wetland Construction				\$1,872,400			\$0			0\$
	10: Utility Relocation				\$53,100			\$0			0\$
	11: Engineering Cost				\$2,864,080			\$581,020			\$
	Total Roadway Estimate:	imate:			\$16,989,145			\$1,899,334			\$725.000

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario I Stage II (Sta . 8+800 to Giroux) 2 Lanes - Actual Contract Prices

				22.5n	ROW		45.0m	ROW
		Unit	Approx.		×	Approx.		
em No.	Description	Price	Quantity	- S	Amount	Quantity	Unit	Amount

Stor	1: Storm Sewer And Drainage							
1.01	Trench Excavation and Native Backfill 450mm Stm (2.0-3.0m depth)	\$450.00	308.4	æ	\$138,780.00	205.6	ε	\$92,520
1.02	Trench Excavation and Native Backfill 525mm Stm (2.0-3.0m depth)	\$450.00	403.8	Ε	\$181,710.00	269.2	ε	\$121,140
1.03	Trench Excavation and Native Backfill 750mm Stm (2.0-3.0m depth)	\$500.00	648	ε	\$324,000.00	432	Ε	\$216.000
1.04	Trench Excavation and Native Backfill 450mm Stm (0-3.0m depth)	\$450.00	20.4	ε	\$9,180.00	13.6	ε	\$6,120
1.05	Trench Excavation and Native Backfill 525mm Stm (0-3.0m depth)	\$450.00	43.8	ε	\$19,710.00	29.2	Ε	\$13,140
1.06	Trench Excavation and Native Backfill 750mm Stm (0-3.0m depth)	\$500.00	37.2	Ε	\$18,600.00	24.8	ε	\$12,400
1.07	Trench Excavation and Native Backfill 750mm Stm (3.0-4.0m depth)	\$550.00	70.8	ε	\$38,940.00		ε	\$25.960
1.08	Trench Excavation and Native Backfill 750mm Stm (4.0-5.0m depth)	\$600.00	12	Ε	\$7,200.00	∞	Ε	\$4.800
1.09	Trench Excavation and Native Backfill 750mm Stm (5.0-6.0m depth)	\$650.00	12	ε	\$7,800.00	80	ε	\$5,200
1.10	Trench Excavation and Native Backfill 900mm Stm (0.0 - 0.3m depth)	\$450.00	9.6	ε	\$4,320.00	6.4	ε	\$2.880
1.10	450mm Class IV Concrete Storm Sewer	\$110.00	308.4	ε	\$33,924.00	205.6	٤	\$22,616
1.11	525mm Class IV Concrete Storm Sewer	\$170.00	403.8	ε	\$68,646.00	269.2	٤	\$45,764
1.12	750mm Class IV Concrete Storm Sewer	\$350.00	648	ε	\$226,800.00		ε	\$151,200
1.13	900mm Class IV Concrete Storm Sewer	\$170.00	9.6	ш	\$1,632.00		٤	\$1,088
1.13	300mm Class V Concrete Catchbasin Lead	\$80.00	100.8	E	\$8,064.00		m	\$5,376
1.14	1200mm Manhole	\$2,000.00	44.7	v.m.	\$89,400.00	Ü,	v.m.	\$29,600
1.15	900mm Catchbasin	\$5,250.00	13.8	No	\$72,450.00	.1.1	No	\$48,300
1.16	1200mm CB/MH	\$3,900.00	38.64	v.m.	\$150,696.00	25.76	v.m.	\$100,464
1.17	NF-80 Frame and Cover	\$1,500.00	10.2	No	\$15,300.00		No	\$10,200
1.18	F-51 Frame and Cover	\$1,500.00	30.6	o _N	\$45,900.00	20.4	No	\$30,600
1.19	450mm Flared End	\$4,000.00	9.0	No	\$2,400.00		No	\$1,600
1.20	525mm Flared End	\$5,000.00	9.0	No	\$3,000.00	0.4	No	\$2,000
1.21	750mm Flared End	\$8,000.00	0.6	No	\$4,800.00		No	\$3,200
1.22	900mm Flared End c/w Galvanized Bar Screen	\$8,000.00	0.6	No	\$4,800.00	0.4	No	\$3,200
1.23	Storm Pond Outlet Control Structure	\$75,000.00	9.0	No	\$45,000.00		oN	\$30,000
1.24	Storm Pond Isolation Structure	\$40,000.00	0.6	No	\$24,000.00	0.4	No	\$16,000
1.25	Gabion Matting	\$105,000.00	0.6	No	\$63,000.00	0.4	No	\$42,000
1.26	Storm Crossing High Pressure Atco Pipeline	\$30,000.00	9.0	No	\$18,000.00		No	\$12,000
1.27	Rock Rip Rap	\$26,250.00	9.0	No	\$15,750.00		No	\$10,500
1.28	Woven Filter Fabric	\$1,050.00	0.6	No.	\$630.00	0.4	No	\$420
		Total Part 1:			\$1,644,432.00			\$1.096.288.00

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario! Stage II (Sta. 8+800 to Giroux) 2 Lanes - Actual Contract Prices

				22.50	n ROW		45.0n	ROW
		Cust	Approx.	105		Approx.	3.5	
SON	Description	Price	Cuantity	Chit	Amount	Oughttv	Just	Amount

Ear	Z: Earthworks							
2.01	Common Excavation	\$8.00	2783.4	m3	\$22,267.20	1855.6	m3	\$14,845
2.02	Borrow Excavation Contractor Supply	\$18.00	23244	m3	\$418,392.00	15496	m3	\$278,928
2.03	Topsoil Strip and Stockpile	\$6.00	7114.5	m3	\$42,687.00	7114.5	m3	\$42,687
2.04	Place 150mm Topsoil	\$1.00	31195	m ²	\$31,195.00	31195	m2	\$31,195
2.05	Seeding	\$0.50	31195	m ₃	\$15,597.50	31195	m2	\$15,598
2.08	Common Excavation South CNR to Pond	\$99,225.60	9.0	No	\$59,535.36	0.4	No.	\$39.680
2.07	Common Excavation on Storm Pond	\$126,048.00	9.0	No	\$75,628.80	0.4	No	\$50,419
2.08	Topsoil Strip and Stockpile Storm Pond	\$43,644.00	0.6	No	\$26,186.40	0.4	No No	\$17,458
2.09	Topsoil Haul and Place Storm Pond	\$14,198.00	9.0	No	\$8,518.80	0.4	No	\$5,679
2.10	Seeding - Storm Pond	\$7,099.00	0.5	m ₃	\$3,549.50	0.5	m2	\$3,550
211	Landscape Storm Pond	\$90,000.00	0.5	No	\$45,000.00	0.5	o _N	\$45,000
5		Total Part 2:	25//0-1		\$748,557.56			\$545.048.04

Roa	3: Roadways and Concrete - New Construction							
3.01	230mm Curb and 500mm Gutter	\$200.00	4160	ε	\$832,000.00	0	ε	80
3.02	300mm Cement Stabilized Subgrade (22kg/m2)	\$17.00	21750	m ²	\$369,750.00	0	m2	80
3.03	400mm of 20mm Granular Base Course	\$55.00	21750	m ₂	\$1,196,250.00	0	m2	80
3.04	130mm of 25mm Asphalt Base	\$55.00	18520	m ₂	\$1,018,600.00	0	m2	\$0
3.05	50mm of 12.5mm Asphalt Base	\$25.00	18520	m.	\$463,000.00	D	m2	80
3.06	50mm of 12.5mm Asphalt Surface	\$25.00	18520	m _s	\$463,000.00	0	m2	\$0
3.07	200mm Slab-on Median	\$250,00	280	m ₂	\$70,000.00	0	m2	80
		Total Part 3:	212 242 24	2000	\$4,412,600.00			\$0.00

	\$0	\$0.00		S	\$0	\$0.00
	No.			2	No	
	0			0	0	
	\$104,000.00	\$104,000.00		\$9,300.00	\$199,700.00	\$209,000.00
	No.			2	No	
	-			-		
	\$104,000.00	Total Part 4:	19	\$9,300.00	\$199,700.00	Total Part 5:
scaping	Landscaping Storm Pond		ment Markings and Signing - Supply and Install	Supply and Install Pavement Markings and Signing	Supply and Install Traffic Signals at McKenny	
4: Land	4.01		5: Paver	5.01	5.01	

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario I Stage II (Sta. 8+800 to Giroux) 2 Lanes - Actual Contract Prices

\$187.5 \$187.5 \$187.58 \$835.00 \$835.00 \$1,096,2 \$145,0 \$3545,0			2.5	0.00	22.5m ROW	ROW		45.0m	45.0m ROW
Install Street Lighting \$273.315.00 1 No 273.315.00 0 No Substitution Substi	Item No.	567.	Unit	Approx. Quantity		Amount	Approx. Quantity	2	Amount
Street Lighting S273,315,00 1 No. 273,315,00 0 No. S0.	6: Stree	t Lighting						l	
S196,600,00	6.01	Supply and Install Street Lighting	\$273,315.00		No.	273,315.00		No.	0\$
Total Part 6: S196,600.00 1 No. S196,600.00 0 No. S106,600.00 0 No. S106,000.00 0 No. S106,000.00 0 No. S106,000.00 0 S106,000.00 0 S106,000.00 0 S106,000.00 0 S106,000.00 S106	6.02	Fortis	\$38,600.00		No.	38,600.00	Ű	No	\$0
Total Part 7: No. \$196,600,000 No. \$10,000,000 No. \$10,000,000 No. \$10,000,000 No. \$10,000,000 No. \$10,000,000 \$10,000,000 No. \$10,000,000 \$10,000,000 \$10,000,000 \$10,000,000 \$10,000,000 \$10,000,000 \$10,000,000 \$10,000,000 \$10,0			Total Part 6:			\$311,915.00			\$0.00
Total Part 7: No. \$196,600.00 0 No. \$197,582	7: CN R	all Cost							
Total Part 7: S196,600.00 1 No. S96,000.00 0 No. S187,695.00		Railway Cost	\$196,600.00		No.	\$196,600,00		No.	So
The number of ELA S997,926.59 0.8 No. \$750,341.27 0.2 No. \$187,585. Total Part 8:		1.5	Total Part 7:	Š		\$196,600.00			\$0.00
Intervitonment EIA \$96,000.00 1 No. \$96,000.00 0 No. \$187,585 Sineering \$937,926.59 0.8 No. \$150,341.27 0.2 No. \$187,585 Stand Coats (St. 8+900 to 10+420) \$100,000.00 8.35 ac \$846,341.27 \$187,585 Cost Summary Total Part 9: 22.5m ROW 45m ROW 45m ROW It works \$1,644,432 \$1,644,432 \$1,096,2 thworks \$104,000 \$104,000 \$104,000 set Lighting Supply and Install \$22.5m ROW \$196,000 Rail Cost \$104,000 \$104,000 \$104,000 \$100,000 \$104,000 \$104,000 \$200,000 \$104,000 \$104,000 \$104,000 \$104,000 \$104,000 \$104,000 \$200,000 \$104,000 \$200,000 \$22,000 \$200,000 \$22,000 \$200,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000	8: Engir	pering Costs							
Total Part 8: No. \$750,341,27 0.2 No. \$187,585		Spencer Environment EIA	\$96,000.00	-	No.	\$96,000.00		No.	\$0
Total Part 8: Sta6,341.27 St87,585 2 Land Costs (St. 8+900 to 10+420) S100,000.00 8.35 ac S835,000.00 Total Part 9: Total Part 9: S10,000.00 S.35 ac S835,000 Total Part 9: Total Part 9: S10,000.00 S.35 ac S835,000 Total Part 9: Total Part 9: S10,000.00 S35,000.00 Sta6,341.27 S10,000 S35,000 S35,000 S10,000 S10,000 S10,000 S10,000 S209,000 S209,000 S209,000 S311,915 S187,5 S835,000 S835,0		ISL Engineering	\$937,926.56	1	No.	\$750,341,27		No.	\$187,585
Cost Summary			Total Part 8			\$846,341.27			\$187,585.32
Stage 2 Land Costs (St. 8+900 to 10+420) Total Part 9: \$835,000.00 8.35 ac \$835,000.00 \$835,000.00	: Land	Costs						ı	
\$835,000.00 \$835,000.00 \$835,000 \$835,000 \$1,644,432 \$1,096,2 \$7,412,600 \$209,000 \$209,000 \$209,000 \$311,915 \$196,600 \$3835,00	9.01	Stage 2 Land Costs (St. 8+900 to 10+420)	\$100,000.00	8.35	oe	\$835,000.00		oe.	\$835,000
\$1,644,432 \$748,558 \$4,412,600 \$104,000 \$209,000 \$311,915 \$186,600 \$835,000 \$835,000 \$835,000			Total Part 9			\$835,000.00		2	\$835,000.00
\$1,644,432 \$748,558 \$4,412,600 \$104,000 \$209,000 \$311,915 \$196,600 \$846,341 \$835,000 \$835,000 \$835,000		Cost Summary			22.5m	ROW		45m	ROW
\$748,558 \$4,412,600 \$104,000 \$209,000 \$311,915 \$196,600 \$646,341 \$635,000 \$835,0		1: Storm Sewer And Drainage				\$1,644,432			\$1,096,288
\$4,412,600 \$104,000 \$209,000 \$311,915 \$196,600 \$846,341 \$835,000 \$835,00		2: Earthworks				\$748,558			\$545,048
\$104,000 \$209,000 \$311,915 \$196,600 \$846,341 \$835,000 \$835,0		3: Roadways and Concrete - New Constr	uction			\$4,412,600			0\$
\$311,915 \$196,600 \$646,341 \$835,000 \$835,000		4: Landscaping	Market base of the			\$104,000			08
\$196,600 \$846,341 \$187,5 \$835,000 \$835,0		6: Street Lighting	and mount			\$311,915			05
\$835,000 \$835,0		7: CN Rail Cost				\$196,600			0\$
\$835,000		8: Engineering Costs				\$846,341			\$187,585
		9: Land Costs				\$835,000	_		\$835,000

\$2,663,921

\$9,308,446

Total Roadway Estimate:

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario I Stage III (Giroux Road to Villeneue Road) Base Alignment

				22.5m	ROW
Item No.	Description	Unit Price	Approx. Quantity	Unit	Amount

1.06 1.07 1.08	450mm Pipe Class IV Concrete Storm Sewer 300mm Class V Concrete Catchbasin Lead 1200mm Manhole	\$200.00 \$105.00 \$8,500.00	240 129.5 52	m m	\$48,000 \$13,598 \$442,000
1.04	300mm Pipe Class IV Concrete Storm Sewer 375mm Pipe Class IV Concrete Storm Sewer	\$125.00 \$150.00	720 240	m m	\$60,000 \$108,000
1.03	Trench Excavation and Native Backfill 450mm Stm (2.0-3.0m depth)	\$500.00	240	m	\$120,000
1.02	Trench Excavation and Native Backfill 375mm Stm (2.0-3.0m depth)	\$375.00	720	m	\$270,000
1.01	Trench Excavation and Native Backfill 300mm Stm (2.0-3.0m depth)	\$275.00	480	m	\$132,000

: Eart	<u>hworks</u>				
2.01	Common Excavation	\$11.00	4,866	m3	\$53,52
2.02	Contractor Supplied Borrow Excavation	\$40.00	34,372	m3	\$1,374,880
2.03	Topsoil Strip and Stockpile	\$8.00	13,557	m3	\$108,456
2.04	Place 150mm Topsoil	\$3.00	30,300	m²	\$90,900
2.05	Seeding	\$1.50	30,300	m ²	\$45,450
		Total Part 2:			\$1,673,212

: Roa	dways and Concrete - New Construction				
3.01	230mm Curb and 500mm Gutter	\$160.00	5560	m	\$889,600
3.02	300mm Cement Stabilized Subgrade (22kg/m2)	\$27.00	28742	m ²	\$776,034
3.03	400mm of 20mm Granular Base Course	\$66.00	28320	m ²	\$1,869,120
3.04	190mm of 25mm Asphalt Base	\$83.00	10520	m ²	\$873,160
3.05	180mm of 25mm Asphalt Base	\$80.00	21042	m ²	\$1,683,360
3.06	50mm of 12.5mm Asphalt Surface	\$27.50	24942	m ²	\$685,905
3.07	200mm Slab-on Median	\$250.00	290	m ²	\$72,500
		Total Part 3:			\$6,849,679

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario I Stage III (Giroux Road to Villeneue Road) Base Alignment

				22.5m	ROW
Item No	Description	Unit Price	Approx. Quantity	Unit	Amount
4: Pave	ment Markings and Signing - Supply and I	nstall			
4.01	Roadway Lines Supply and painting	\$9,300.00	1	No.	\$9,300
4.02	Supply and Install Intersection Signing	\$5,000.00	2	No.	\$10,000
		Total Part 4:			\$19,300
		Total Part 5:			\$600,000
5.01	Supply and Install Street Lighting	\$15,000.00 Total Part 5:	40	No.	\$600,000 \$600,000
6: Inter	section Signilization	-1100	1.		
6.01	Signilization for Intersection at Giroux	\$225,000.00	1	No.	\$225,000
6.02	Signilization for Intersection at Villeneuve	\$225,000.00	1	No.	\$225,000
		Total Part 6:			\$450,000
7: Land	Costs				
7.01	Stage 3 Land Costs (St. 10+400 to 12+510)	\$82,000.00	22.9	Ac	\$1,877,800
		Total Part 7:			\$1,877,800

Cost Summary	22.5m ROW	
1: Storm Sewer And Drainage		\$1,474,598
2: Earthworks		\$1,673,212
3: Roadways and Concrete - New Construction		\$6,849,679
4: Pavement Markings and Signing - Supply and Install		\$19,300
5: Street Lighting		\$600,000
6: Intersection Signilization		\$450,000
7: Land Costs		\$1,877,80
Subtotal:		\$12,944,58
Mob and Demob	5%	\$553,33
Engineering	10%	\$1,106,67
Contingency	15%	\$1,660,01
Total Preliminary Roadway Estimate:		\$16,264,62

Costs to Date

Modifications were made to the original plan to assist with the future conversion of Ray Gibbon Drive to a freeway. The costs shown in the following represent the costs for a 2-lane modified arterial roadway. Stages 1 and 2 are based on actual construction costs, completed in 2006 and 2007 dollars, respectively. Assumptions for Stage 3 are listed below

Stage 3

- 2008 unit rates
- Full Ultimate ROW, 2 lanes constructed (proposed 2009 construction)
- Ultimate alignment, at Villeneuve SW ramp alignment will be used
- Ultimate vertical alignment where possible
- Urban/rural drainage
- > Ultimate wet pond to be constructed, with outfall to Carrot Creek
- Pavement Structure As per RGD
- Semi-mountable curb
- Includes storm pipe extension to connect to Stage 2
- Includes roadway and drainage costs to 14+000
- Includes Sifton Pipeline Relocation
- Includes required and remnant land costs from Giroux Road to Villeneuve Road, and right-of-way for the storm pond and Carrot Creek outfall

Refer to Appendix I for the Mass haul diagram.

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario II Stage I (137 Ave to St. 8+800) Costs as Constructed

	22.5m	22.5m ROW		45m ROW		78m ROW	^
Unit	Approx.		Approx.		Approx.		

Item N	o, Description	Price	Quantity	Unit	Amount	Quantity	Chit	Amount	Quantity	Chrit	Amount
1: Con	npleted Contract Work										
1.01	Bridge Contract	\$6,723,300.00	99.0	No	\$4,570,200	0.32	No	\$2,153,100	0 0	No	80
1.02	Street Lighting Contract	\$400,000.00	,	No	\$400,000	0	No	65	0 0\$	No.	\$0
1.03	Sureway Road Contract	\$11,028,700.00	0.80	No	\$8,874,400	0.16	No	\$1,754,300	0 0.04	No	\$400,000
1.04	Wilco- Riel Wetland Contract	\$2,366,200.00	0.58	No	\$1,372,200	0	No	S	\$0 0.42	No	\$994,000
1.05	Landscaping	\$180,000.00	1	No	\$180,000	0	No	S	0 08	No No	\$0
		Total Part 1:			\$15,396,800			\$3,907,400	0		\$1,394,000

No.	anon						3				
		\$53,100.00	-	No.	\$53,100	0	No.	80	0	No.	80

S. Edild Costs										
3.01 Land Acquired	\$1,717,000.00	0.29	No.	\$496,000	0.29	No.	\$496,000	0.42	No.	\$725.000
	Total Part 3:			\$496,000			\$496,000			\$725,000

-	Misc. Charges for Signage and Marking	\$274,800.00	-	No.	\$274,800 0	_	0.	\$0	0	No.	So
1		Total Part 4:			\$274,800	3		\$0			So

5: Wor	Vork To Complete										
5.01	Landscape Maintenance	\$138,500.00	0	No.	So	-	No.	\$138,500	0	No.	80
		Total Part 5:			0\$			\$138,500			0\$

Scenario II Stage I (137 Ave to St. 8+800)

	78m ROW
	45m ROW
Costs as constructed	22.5m ROW

Amount

Approx. Quantity Unit

Amount

Approx. Quantity Unit

Amount

Approx. Quantity Unit

Unit

Description

Item No.

	\$118,260	\$60,050	\$321,718	\$52,560	\$552,588
	No.	No.	No.	No.	
	0.131	0.131	0.131	0.131	
	\$187,200	\$95,056	\$509,264	\$83,200	\$874,720
	No.	No.	No.	No.	
	0.208	0.208	0.208	0.208	
	\$594,540	\$301,894	\$1,617,404	\$264,240	\$2,778,079
	No.	No.	No.	No.	
	90990	9099.0	9099.0	9099.0	
	\$900,000.00	\$457,000.00	\$2,448,387.00	\$400,000.00	Total Part 6:
eering Costs	6.01 EIA Process	Spencer Environmental	ISL Engineering	Spencer Monitoring	
6: Engin	6.01	6.02	6.03	6.04	

Cost Summary	22.5m ROW	45m ROW	78m ROW
1: Completed Contract Work	\$15,396,800	\$3,907,400	\$1,394,000
2: Utility Relocation	\$53,100	0\$	80
3: Land Costs	\$496,000	\$496,000	\$725,000
4: Pavement Markings and Signing - Actual Cost	\$274,800	0\$	80
5: Work To Complete	0\$	\$138,500	80
6: Engineering Costs	\$2,778,079	\$874,720	\$552,588
Total Roadway Cost:	\$18,998,779	\$5,416,620	\$2,671,588

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario II Stage II (Station 8+800 to Giroux Road) Costs as Constructed

				22.5m ROW	MO		45m ROW	W		78m ROW	WC
M mot		Unit	Approx.	- Init	Amount	Approx.	1.00	Amount	Approx.	4,41	Amount
itelli NO	Describion	DIL.	Codillity	1	Alloquic	Guariniy	115	Amount Management	Cuanniy	1100	Amount
1: Con	Completed Contract Work					40					
1.01	In- Line- Road Contract	\$10,765,900.00	0.52	No	\$5,586,900	0.117	No	\$1,261,000	0.364	No.	\$3,918,000
1.02	Signilization	\$199,700.00	+	o _N	\$199,700	0	ON	S	0	No	0\$
1.03	Fortis- Street Lighting	\$38,600.00	1	No	\$38,600	0	No	80	0	No	80
1.04	Landscaping Pond	\$260,000.00	1	No.	\$260,000	0	No.	80	0	No.	\$0
		Total Part 1:			\$6,085,200			\$1,261,000	-		\$3,918,000

2: CNR Costs										
2.01 CNR	\$196,600.00	-	No.	\$196,600	0	No.	80	0	No.	\$0
	Total Part 2:			\$196,600			0\$			0\$
3: Land Costs										
3.01 McKenney Avenue Land Costs	\$581,000.00	0	No.	80	0	No.	80	,-	No.	\$581,000
	Total Part 3:		ST 100 100 100 100 100 100 100 100 100 10	0\$		1	0\$			\$581,000

Aisc. Charges for Signage and Marking	\$9,300.00	,	No.	\$9,300	0	No.	80	0	No.	20
	Total Part 4:			\$9,300			80			05

5: Engin	eering Costs										
5.01	ISL Engineering	\$1,490,700.00	0.68	No.	\$1,008,000	0.20	No.	\$300,000	0.12	No.	\$182,700
		Total Part 5:			\$1,008,000			\$300,000			\$182,700

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario II Stage II (Station 8+800 to Giroux Road) Costs as Constructed

wo	Amount	WO	\$3,918,000 \$0 \$581,000 \$0 \$182,700	\$4,681,700
78m ROW	Unit	78m ROW		
	Approx. Quantity			
wo	Amount	wo	\$1,261,000 \$0 \$0 \$0 \$0 \$0	\$1,561,000
45m ROW	Chit	45m ROW		ľ
	Approx. Quantity	*		
tow	Amount	NOW	\$6,085,200 \$196,600 \$0 \$9,300 \$1,008,000	\$7,299,100
22.5m ROW	Unit	22.5m ROW		
	Approx. Quantity			
	Unit		ctual Cost	
	Description	Cost Summary	1: Completed Contract Work 2: CNR Costs 3: Land Costs 4: Pavement Markings and Signing - Actual Cost 5: Engineering Costs	Total Roadway Cost:
	Item No.		± 8 8 8 8	

-21			11	Ultimate	ROW
Item No.	Description	Unit Price	Approx. Quantity	Unit	Amount

		Total Part 1A:			\$2,387,820.0
1.20	DK-7 Frame and Cover	\$1,500.00	14	No.	\$21,000.0
1.19	NF-80 Frame and Cover	\$900.00	7	No.	\$6,300.0
1.18	900mm Catchbasin	\$5,800.00	7	No	\$40,600.0
1.17	1800mm Manhole	\$5,000.00	24	v.m.	\$120,000.0
1.16	1200mm CB/MH	\$3,700.00	16.1	v.m.	\$59,570.0
1.15	1200mm Manhole	\$8,500.00	31	v.m.	\$263,500.0
1.14	2400mm Manhole	\$9,000.00	35	v.m.	\$315,000.0
1.13	1500mm Class IV Concrete Storm Sewer	\$1,400.00	242	m	\$338,800.0
1.12	900mm Class IV Concrete Storm Sewer	\$900.00	445	m	\$400,500.
1.11	Trenchless Excavation 1500mm	\$2,000.00	75	m	\$150,000.
1.10	Trench Excavation and Native Backfill 1500mm Stm (12.0-13.0m depth)	\$1,900.00	10	m	\$19,000.
1.09	Trench Excavation and Native Backfill 1500mm Stm (11.0-12.0m depth)	\$1,850.00	22	m	\$40,700.
1.08	Trench Excavation and Native Backfill 1500mm Stm (10.0-11.0m depth)	\$1,800.00	19	m	\$34,200.0
1.07	Trench Excavation and Native Backfill 1500mm Stm (9.0-10.0m depth)	\$1,750.00	23	m	\$40,250.0
1.06	Trench Excavation and Native Backfill 1500mm Stm (8.0-9.0m depth)	\$1,700.00	28	m	\$47,600.0
1.05	Trench Excavation and Native Backfill 1500mm Stm (7.0-8.0m depth)	\$1,650.00	65	m	\$107,250.
1.04	Trench Excavation and Native Backfill 900mm Stm (11.0-12.0m depth)	\$900.00	95	m	\$85,500.
1.03	Trench Excavation and Native Backfill 900mm Stm (10.0-11.0m depth)	\$875.00	120	m	\$105,000.
1.02	Trench Excavation and Native Backfill 900mm Stm (9.0-10.0m depth)	\$850.00	132	m	\$112,200.
1.01	Trench Excavation and Native Backfill 900mm Stm (8.0-9.0m depth)	\$825.00	98	m	\$80,850.

1.01	Trench Excavation and Native Backfill 375mm Stm (2.0-3.0m depth)	\$375.00	120	m	\$45,000.00
1.02	Trench Excavation and Native Backfill 375mm Stm (4.0-5.0m depth)	\$400.00	90	m	\$36,000.00
1.03	Trench Excavation and Native Backfill 525mm Stm (2.0-3.0m depth)	\$550.00	120	m	\$66,000.00
1.04	Trench Excavation and Native Backfill 600mm Stm (3.0-4.0m depth)	\$650.00	240	m	\$156,000.00
1.05	Trench Excavation and Native Backfill 600mm Stm (4.0-5.0m depth)	\$700.00	75	m	\$52,500.00
1.06	Trench Excavation and Native Backfill 675mm Stm (3.0-4.0m depth)	\$700.00	120	m	\$84,000.00
1.07	Trench Excavation and Native Backfill 675mm Stm (4.0-5.0m depth)	\$725.00	120	m	\$87,000.00
1.08	Trench Excavation and Native Backfill 750mm Stm (3.0-4.0m depth)	\$725.00	40	m	\$29,000.00

				Ultimate	ROW
Item No.	Description	Unit Price	Approx. Quantity	Unit	Amount
1.09	Trench Excavation and Native Backfill 750mm Stm (5.0-6.0m depth)	\$750.00	60	m	\$45,000.00
1.10	Trench Excavation and Native Backfill 750mm Stm (6.0-7.0m depth)	\$775.00	60	m	\$46,500.00
1.11	Trench Excavation and Native Backfill 1350mm Stm (7.0-8.0m depth)	\$1,550.00	250	m	\$387,500.00
1.12	Trench Excavation and Native Backfill 900mm Stm (7.0-8.0m depth)	\$800.00	120	m	\$96,000.00
1.13	375mm Class IV Concrete Storm Sewer	\$150.00	210	m	\$31,500.00
1.14	525mm Class IV Concrete Storm Sewer	\$220.00	120	m	\$26,400.00
1.15	600mm Class IV Concrete Storm Sewer	\$310.00	315	m	\$97,650.00
1.16	675mm Class IV Concrete Storm Sewer	\$500.00	240	m	\$120,000.0
1.17	750mm Class IV Concrete Storm Sewer	\$750.00	40	m	\$30,000.0
1.18	900mm Class IV Concrete Storm Sewer	\$900.00	120	m	\$108,000.0
1.19	1350mm Class,IV Concrete Storm Sewer	\$1,250.00	250	m	\$312,500.0
1.20	2400mm Manhole	\$9,000.00	0	v.m.	\$0.0
1.21	1200mm Manhole	\$8,500.00	46	v.m.	\$391,000.0
1.22	1200mm CB/MH	\$3,700.00	19	v.m.	\$70,300.0
1.23	1800mm Manhole	\$5,000.00	24	v.m.	\$120,000.0
1.24	900mm Catchbasin	\$5,800.00	27	No	\$156,600.0
1.25	NF-80 Frame and Cover	\$900.00	13	No.	\$11,700.0
1,26	DK-7 Frame and Cover	\$1,500.00	16	No.	\$24,000.0
1.27	600mm Flared End c/w Galvanized Bar Screen	\$8,300.00	2	No	\$16,600.0
1.28	750mm Flared End c/w Galvanized Bar Screen	\$10,000.00	1	No	\$10,000.0
1.29	1350mm Flared End c/w Galvanized Bar Screen	\$15,000.00	1	No	\$15,000.0
1.30	STC6000 Stormceptor	\$90,000.00	1	No.	\$90,000.0
1.31	Gabion Matting	\$550.00	170	m2	\$93,500.0
1.32	Rock Rip Rap	\$200.00	500	m2	\$100,000.0
1.33	600 mm Culverts	\$750.00	40	m	\$30,000.0
1.34	North Pond Outlet Control Structure	\$80,000.00	1	No.	\$80,000.0
1.35	Forebay Isolation Structure	\$45,000.00	1	No.	\$45,000.0
		Total Part 1B:			\$3,110,250.00

Farth	works				
Larti	- Indiana				
2.01	Common Excavation	\$11.00	25,317	m3	\$278,487.0
2.02	Borrow Excavation Contractor Supply	\$40.00	113,639	m3	\$4,545,560.0
2.03	Topsoil Strip and Stockpile	\$8.00	117,139	m3	\$937,112.0
2.04	Haul and Place 150mm depth Topsoil from Stockpile	\$3.00	28,746	m²	\$86,238.0
2.05	Seeding	\$1.50	28,746	m ²	\$43,119.0
2.06	Common Excavation of North Pond	\$11.00	150,000	m ³	\$1,650,000.0
		Total Part 2:		ATT. 122	\$7,262,029.0

: Road	ways and Concrete - New Construction				
3.01	300mm Cement Stabilized Subgrade (22kg/m2)	27.00	24024	sq m	\$648,637.20
3.02	400mm of 20mm Granular Base Course	66.00	30696	sq m	\$2,025,909.60
3.03	1000mm Bottom Ash (Includes Geotextile)	\$70.00	8,184	m ²	\$572,880.00

				Ultimate	ROW
Item No.	Description	Unit Price	Approx. Quantity	Unit	Amount
3.04	180mm of 25mm Asphalt Base	80.00	20922	sq m	\$1,673,760.0
3.05	190mm of 25mm Asphalt Base	83.00	6560	sq m	\$544,480.0
3.05	50mm of 12.5mm Asphalt Surface	27.50	29068	sq m	\$799,370.0
3.06	Semi Mountable Roll Face Curb and Gutter	175.00	3540	m2	\$619,500.0
	Toolin modification room and solitor	Total Part 3:			\$6,265,036.8
4: Lands	scaping				
4.01	Landscaping Villeneuve Pond	\$260,000.00	1	No.	\$260,000.0
	Landscaping Vineneuve Fond	Total Part 4:		110.	\$260,000.0
5.01	Roadway Lines Supply and Paint and painting (directional dividing and 2 edge lines)	\$4,600.00	2.2	km	\$10,120.0
5: Paver	nent Markings and Signing - Supply and Ins	tall			
5.02	Supply and Install Signing	\$20,000.00	1.0	No.	\$20,000.0
		Total Part 5:			\$30,120.0
	Supply and Install Lighting	\$15,000.00	45	No.	678,000.0
		Total Part 6:			\$678,000.0
7: Signil	ization				
7.01	Signilization for Intersection at Giroux Ave	\$225,000.00	1	No.	\$225,000.0
7.02	Signilization for Intersection at Villeneuve Ave	\$225,000.00	1	No.	\$225,000.0
		Total Part 7:			EAEU DOU U
		Total Care II			\$450,000.0
8: Misce	llaneous	Total Care II			\$450,000.0
8: Misce 8.01	Coconut ECB - NAG 125	\$12.00	14,120	m2	
	47	\$12.00 \$50.00	14,120 209	m2 m	\$169,440.0 \$10,434.7
8.01	Coconut ECB - NAG 125	\$12.00		1000	\$169,440.0 \$10,434.7
8.01	Coconut ECB - NAG 125 Georidge	\$12.00 \$50.00		1000	\$169,440.0
8.01 8.02	Coconut ECB - NAG 125 Georidge	\$12.00 \$50.00		1000	\$169,440.0 \$10,434.7
8.01 8.02 9: Land	Coconut ECB - NAG 125 Georidge Cost	\$12.00 \$50.00 Total Part 8:	209	m	\$169,440.0 \$10,434.7 \$179,874.7 \$5,540,000.0
8.01 8.02 9: Land 9.01	Coconut ECB - NAG 125 Georidge Cost	\$12.00 \$50.00 Total Part 8:	209	m	\$169,440.0 \$10,434.7 \$179,874.7 \$5,540,000.0
8.01 8.02 9: Land 9.01	Coconut ECB - NAG 125 Georidge Cost Initial 22.5m ROW	\$12.00 \$50.00 Total Part 8:	209	m	\$169,440.0 \$10,434.7 \$179,874. 7

-45				Ultimate	ROW
Item No.	Description	Unit Price	Approx. Quantity	Unit	Amount

11: Gas	line Relocation Costs				
11.01	Villeneuve Gas Line Relocation	\$250,000.00	1	No	\$250,000.00
		Total Part 11:			\$250,000.00

Cost Summary	Uli	timate ROW
1A: Storm Sewer And Drainage- Stage 2		\$2,387,820.00
1B: Storm Sewer And Drainage- Stage 3		\$3,110,250.00
2: Earthworks		\$7,262,029.00
3: Roadways and Concrete - New Construction		\$6,265,036.80
4: Landscaping		\$260,000.00
5: Pavement Markings and Signing - Supply and Install		\$30,120.00
6: Street Lighting		\$678,000.00
7: Signilization		\$450,000.00
8: Miscellaneous		\$179,874.78
9: Land Cost		\$5,540,000.00
10: Environmental Costs		\$100,000.00
11: Gasline Relocation Costs		\$250,000.00
Subtotal:		\$26,513,130.58
Contingency	15%	\$3,145,969.59
Engineering	10%	\$2,097,313.06
Total Roadway Estimate:		\$31,756,413.23

3. Freeway Improvement Costs

Using the two existing lanes of Ray Gibbon Drive, cost estimates were prepared to determine the cost of improving the modified arterial roadway to an ultimate 8-lane cross-section. Costs are provided to widen to a 4, 6 and 8-lane cross-section.

3.1 Four Lanes Grade Separated, from 5+280 to 14+600

The following table identifies costs to go from the existing infrastructure to a 4-lane cross-section with interchanges and a grade-separation at the CN crossing, plus Stage 3 (proposed 2009 construction). The assumptions for this stage are listed below:

- > 2008 Prices
- Detour roads at 137 Ave, CN (road), Giroux and Villeneuve
- CN Detour (rail) included in bridge estimate
- Structures 137 Ave, CN, McKenney, Giroux, Villeneuve
- Signals at all ramp terminals
- Ultimate Grading
- > Landfill excavation (Holden)
- Noise Attenuation
- Overhead Sign Structures
- North Pond Renovation
- Stage 2 and 3 ponds no work required
- Box Culvert Expansion
- Curb and Gutter removal on existing stage 1 and 2 replace with semi mountable
- Widen road for extra shoulder width AT standard
- Removals (throw away) detours
- Road removal and construction NB lanes approx 9+000 to 11+000
- Additional street lighting (modifications)
- Pedestrian Bridge
- Remaining right-of-way requirements, including parcels north of Villeneuve Road to 14+600.

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario III, 4 Lanes With Interchanges (137 Ave to St. 14+600)

	87	0.00000	N. Contraction	Stage	1		Sta	Stage II		Stage III	Stage III Expanded
Item No	Description	Unit	Approx. Quantity	CPIE	Amount	Approx. Quantity	Chit	Amount	Approx. Quantity	Cuit	Amount
1: Storr	1: Storm Sewer And Drainage										
101	Trench Excavation and Native Backfill 300mm Stm (3.0-4.0m daeph)	00 0005	22.8	E	\$6.840	10.8	ε	070 63	26.4	8	000 43
1.02	Trench Excavation and Native Backfill 375mm Stm (3.0.4.0m depth)	\$375.00	79.8	E	829 928	37.8	E	\$14.175			234 650
1.03	Trench Excavation and Native Backfill 450mm Stm (3.0-4.0m deeth)	\$500.00	91.2	E	\$45,600	43.2	ε	\$21.600			\$52.800
8	Trench Excavation and Native Backfill 525mm Stm (3.0-4.0m depth)	\$600.00	222.68	E	\$133.608	105.48	ε	\$63.288	200		\$154.704
1.05	Trench Excavation and Native Backfill 600mm. Stm (3.0-4.0m deeth)	\$650.00	84.36	ε	\$54.834	39.96	Ε	\$25.974			\$63.492
1.06	Trench Excavation and Native Backfill 600mm Stm (4.0-5 0m depth)	\$700.00	28.5	E	\$19,950	13.5	E	\$9.450			\$23,100
1.07	Trench Excavation and Native Backfill 675mm Stm (3.0-4.0m deeth.)	\$700.00	45.6	E	\$31,920	21.6	E	\$15,120	wa.		\$36.960
1.08	Trench Excavation and Native Backfill 750mm. Stm (3.0-4.0m deeth)	\$725.00	178.6	ε	\$129.485	84.6	ε	\$61.335			\$149.930
1.09	Trench Excavation and Native Backfill 900mm. Stm (3.0-4.0m deeth)	\$775.00	1786	E	\$138.415	8.86	E	\$65.565			\$160.270
1.10	Trench Excavation and Native Backfill 1050mm Stm. (3.0-4.0m deeth.)	\$800.00	168.34	8	\$134.672	7974	E	583.792			\$155 936
131	Trench Excavation and Native Backfill 1200mm Stm (3.0-4.0m death)	\$850.00	224.96	ε	\$191,216	106.56	ε	\$90.576			\$221.408
1.12	Trench Excavation and Native Backfill 1350mm Stm (7.0-8.0m death)	\$1,550.00	96	ε	\$147.250	45	Ε	\$69.750			\$170.500
1.13	300mm Class IV Concrete Storm Sewer	\$125.00	22.8	ε	\$2,850	10.8	ε	\$1,350			\$3,300
1.14	375mm Class IV Concrete Storm Sewer	\$150.00	79.8	Ε	\$11,970	37.8	E	\$5,670		£ 3	\$13,860
1.15	450mm Class IV Concrete Storm Sewer	\$200.00	91.2	E	\$18,240	43.2	E	\$8,640	П		\$21,120
1.16	S25mm Class IV Concrete Storm Sewer	\$220.00	112 86	EE	\$48,990	105.48	EE	\$23,206	257.84	EE	\$56,725
1.18	675mm Class IV Concrete Storm Sewer	\$500.00	45.6	E	\$22,800	21.6	100	\$10,800	1		\$26,400
1.19	750mm Class IV Concrete Storm Sewer	\$750.00	178.6	ε	\$133,950		E	\$63,450	П		\$155,100
1.20	900mm Class IV Concrete Storm Sewer	\$300.00	178.6	E	\$160,740	84.6	E	\$76,140	206.8		\$186,120
122	1200mm Class IV Concrete Storm Sewer	\$1,000.00	224.96	εε	\$269.952	106.56	EE	\$127.87		m 8	\$312 575
1.23	1350mm Class IV Concrete Storm Sewer	\$1,250.00	96	ε	\$118,750	45	15	\$56,25(110		\$137,500
1.24	300mm Class V Concrete Catchbasin Lead	\$105.00	622,44	ε	\$65,356	294.84	8	\$30,958			\$75,676
1.25	1200mm Manhole	\$4,000.00	68.4	v.m.	\$273,600		v.m.	\$129,600		2 v.m.	\$316,800
1.26	900mm Catchbasin	\$5,800.00	41.8	No.	\$242,440		No.	\$114,840			\$280,720
1.27	1200mm CB/MH	\$3,700.00	54.34	E .	\$201,058	25.74		\$95,238			\$232,804
1 29	Adust MHCB	\$5,000,00	6.08	Y.B.	\$30,400	2.88	- E	\$16,400	7.04	× ×	\$35,500
130	NF-80 Frame and Cover	\$800.00	23.94	No	\$21,546	ì		\$10,200			\$24,948
1.31	DK-7 Frame and Cover	\$1,500.00	69.92	No	\$104,880	3	No	\$49,680			\$121,440
1.32	300mm Flared End c/w Galvanized Bar Screen	\$3,000.00	1.14	o _N	\$3,420	0.54		\$1,620			\$3,960
1.33	375mm Flared End ow Galvanized Bar Screen	\$4,000.00	0.38	No.	\$1,520		o i	\$720	0.44		\$1,760
40.	1050mm Flared End ow Galvanised Bar Screen	\$12,000.00	0.30	ON ON	\$4,550		11:	52,10		NO V	35,280
1.36	Remove CBMH and Leads	\$5,000,00	4.94	No	\$24,700	234	1	\$11,700		100	\$28,600

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario III, 4 Lanes With Interchanges (137 Ave to St. 14+600)

		0.00		Stage	-		S	Stage II	•	Stage III	Stage III Expanded
tem No	Description	Unit	Approx. Quantity	Chit	Amount	Approx. Quantity	Unit	Amount	Approx.	To Co	Amount
1.37	Remove CB and Leads	\$4,500.00	13.68	No	\$61,560	6.48	No	\$29,160	15.84	No.	\$71,280
1.38	Drop Structure	\$50,000.00	0.38	No.	\$19,000	0.18	No	89.000	0.44	No	\$22,000
1.39	600mm CSP Culverts	\$750.00	30.4	ε	\$22,800	14.4	Ε	\$10,800	35.2	ε	\$26,400
1,40	1000mm CSP Culverts	\$950.00	45.6	ε	\$43,320	21.6	Ε	\$20,520		ε	\$50.160
1.41	STC750 Stormceptor	\$60,000.00	0.76	No.	\$45,600	0.36	No	\$21.600		No	\$52,800
1,42	STC6000 Stormceptor	\$90,000.00	0.38	No.	\$34,200	0.18	No	\$16,200	0.44	No	\$39.600
1,43	Modification to North Pond	\$150,000.00	0.38	No.	\$57,000	0.18	No	\$27,000	0.44	No	\$66,000
1,44	CB Remove and Replace at McKenny	\$20,000.00	0.38	No.	\$7,600	0.18	No	\$3.600	0.44	No	\$8,800
		Total Part 1:			\$3,359,743			\$1,591,457			\$3,890,229

10.	Remove Curb and Gutter	\$35.00	4955,2	w	\$173,432	2,347	E	\$82,152		8	\$200.816
.02	Remove Asphalt	\$3.00	47880	m2cm	\$143,640	22,680	m2cm	\$68,040	55,440	m2cm	\$166,320
.03	Remove Misc. Concrete	\$67.00	285.76	m _s	\$19,146	135	m²	89,069		,E	\$22,169
8	Remove Walking Trail	\$3.00	3249	mzcm	\$9,747	1,539	m2cm	\$4,617	3,762	m2cm	\$11,286
		Total Part 2:			\$345,965			\$163,878			\$400.591

Ear	3: Earthworks							¥			
3.01	Common Excavation South of Sturgeon River	\$12.00	12571.16	m3	\$150,854	5,955	m3	\$71,457	14.556	m3	\$174.673
3.02	Borrow Excavation Contractor Supply - South of Sturgeon River	\$40.00	42493,88	m3	\$1,699,755	20,129	m3	\$805,147	49,203	E SE	\$1,968.138
3.03	Strip & Stockpile Topsoil Station - South of Sturgeon River	\$8.00	13758.28	m3	\$110,066	6,517	28	\$52,137	15,931	m3	\$127.445
3.04	Common Excavation - North of Sturgeon River	\$14.00	331277.92	m3	\$4,637,891	156,921	m3	\$2,196,896	383,585	m3	\$5,370,189
3.05	Borrow Excavation Contractor Supply - North of Sturgeon River	\$40.00	131989.58	m3	\$5,279,583	62,521	m3	\$2,500,855	152,830	£	\$6,113,202
3.06	Strip & Stockpile Topsoil Station - North of Sturgeon River	\$8.00	50788.9	m3	\$406.311	24,058	m3	\$192,463	58,808	m3	\$470.466
3.07	Common Excavation- Holden Landfill Offsite	\$50.00	19186.2	m3	\$959,310	9,088	m3	\$454,410	22,216	m3	\$1,110,780
3.08	Haul and Place 150mm Topsoil From Stockpile	\$3.00	230968.56	, w	\$692,906	109,406	m ₂	\$328,218	267,437	m ²	\$802,312
3.09	Seeding	\$1.50	230968.56	m ₂	\$346,453	109,406	m ²	\$164,109	267,437	m,	\$401,156
3.10	Clearing & Grubbing	\$1,000.00	0.38	Ha	\$380	0.18	Ha	\$180	0.44	¥	\$440
		Total Part 3:	200000		\$14,283,509	2000		\$6,765,873			\$16,538,800

5											
4.01	Semi Mountable Roll Face Curb and Gutter	\$175.00	13892.8	8	\$2,431,240		Е	\$1,151,640		ε	\$2,815,120
4.02	230mm Curb 500mm Gutter	\$160.00	3192	ε	\$510,720	П	ε	\$241,920		E	\$591,360
4.03	200mm Slab-on Median	\$250.00	197.6	m ²	\$49,400	96	m ₂	\$23,400	228	,m	\$57,200
4.04	130mm Concrete Island Filler	\$150.00	570	m ²	\$85,500	270	m ²	\$40,500	099	m,	\$99,000
4.05	300mm Cement Stabilized Subgrade	\$27.00	120202 36	m ₃	\$3,245,464	56,938	, m	\$1,537,325	139,182	"E	\$3,757,905
4.06	Asphalt Trail	\$175.00	152	m ₂	\$26,600	72	m ₂	\$12,600	178	e ^m	\$30,800

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario III, 4 Lanes With Interchanges (137 Ave to St. 14+600)

			51	Stage	10		Sta	Stage II		Stage III 6	Stage III Expanded
Item No	Description	Unit	Approx. Quantity	Onit	Amount	Approx. Quantity	Unit	Amount	Approx. Quantity	Č	Amount
4.07	1000mm Bottom Ash (Includes Geotextile)	\$70.00	14200.6	m ²	\$994,042	6,727	m ²	\$470,862	16,443	°E	\$1,150,996
4.08	400mm of 20mm Granular Base Course	\$66.00	103261.2	m ²	\$6,815,239	48,913	m _s	\$3,228,271	119,566	2,6	\$7,891,330
4.09	180mm of 25mm Asphalt Base	\$80.00	107834.88	m ₂	\$8,626,790	51,080	m ²	\$4,086,374	124,861	,e	\$9,988,915
4.10	50mm of 12.5mm Asphalt Surface	\$27.50	139754.88	em ₂	\$3,843,259	66,200	, m	\$1,820,491	161,821	Æ.	\$4,450,090
4.11	190mm of 25mm Asphalt Base	\$83.00	33516	m ²	\$2,781,828	15,876	"w	\$1,317,708	38,808	32	\$3,221,064
4.12	75mm of 12.5mm Asphalt Surface	\$32.00	1520	, m	\$48,640	720	_ w_	\$23,040	1,760	~E	\$56,320
4.13	140mm of 25mm Asphalt Base	\$75.00	33440	m ²	\$2,508,000	15,840	"w	\$1,188,000	38,720	E _E	\$2,904,000
4.14	Install and Remove Giroux Interchange Detour	\$1,066,151.00	0.38	No	\$405,137	0.18	No	\$191,907	0.44	No.	\$469,106
4.15	Install and Remove Villeneuve Interchange Detour	\$1,066,151.00	0.38	No	\$405,137	0.18	No	\$191,907	0.44	No	\$469,106
4,16	Install and Remove McKenny Interchange Detour	\$1,325,000.00	0.38	No.	\$503,500	0.18	No	\$238,500	0.44	No	\$583,000
		Total Part 4:			\$33,280,497			\$15,764,446			\$38,535,313

Suga											
5.01	Pre-Cast New Mini Barriers	\$400.00		No.	os	18	No.	\$7,200	l	No	80
5.02	CNR Subway bridge	\$2,600,000.00	0	No	0\$	÷	No	\$2,600,000	0	No	80
5.03	install and Remove Sheetpiling (CNR Detour Road)	\$500,000.00	0	No.	0\$	1.0	No.	\$500,000	0	No.	80
5.04	Giroux overpass	\$13,900,000.00	0	No.	0\$	0.5	No	\$6,950,000	0.5	No.	\$6,950,000
5.05	McKenney Overpass	\$11,500,000.00	0.5	No.	\$5,750,000	0.5	No.	\$5,750,000	0	No	0\$
5.06	Villeneuve Overpass	\$11,800,000.00	0	No.	So	0.0	No	os	1.0	No.	\$11,800,000
5.07	137 Ave Overpass	\$9,300,000.00	1	No	\$9,300,000	0.0	o _N	\$0	0	No.	80
5.08	Retaining Walls at 137 Aveneue	\$1,200,000,00	,	No	\$1,200,000	0.0	No	80	0	No.	SO
5.09	Sturgeon River Bridge	\$4,400,000.00	*	No	\$4,400,000	0.0	No	So	0	No.	So
5.10	Sturgeon River Pedestrian Bridge	\$1,900,000.00		No.	\$1,900,000	0.0	No	So	0	No.	80
		Total Part 5:			\$22,550,000			\$15,807,200			\$18.750.000

		The state of the s									
8.01	Roadway Lines Supply and Paint and painting (directional dividing and 2 edge lines)	\$2,000.00	3.8	km	\$7,600	1.8	km	\$3,600	4.4	Ę	\$8,800
8.02	Install Signs (Overhead)	\$2,000,000.00	1.52	No	\$3,040,000	2.0	No	\$1,440,000	1.8	No.	\$3,520,000
		Total Part 6:			\$3,047,600			\$1,443,600			\$3,528,800

\$1,591,800 \$3,714.		Total Part 7:	
50 3183.6 m2 \$1,591,800 7428.4 m2 \$3,714,	0 m2	\$500.00	
50 3183.6 m2 51,591,800 7428.4 m2 53,714, 50 51,591,800 51,591,800 53,714.	0 m2	\$500.00 Total Part 7:	

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario III. 4 Lanes With Interchances (137 Ave to St. 14460)

	-	
	ı	
	-	
	Я	ŀ
	1	
		ļ
	1	
	1	
	١	
	1	
	ı	
	1	
	1	į
_	1	
Š	ı	
ŧ	1	
Š	1	
2 25		
5	I	l
ŧ	Ī	ľ
2	1	
2	1	
å	ı	
	ı	
9	. 1	ļ
8	-1	
ulie		
5		
s with intel	1	
5		
5	1	
5		
5		
5		
5		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		
nano III, 4 Lanes with		

2				Stage			Stage	le II		Stage III Expanded	xpanded
Item No	Description	Unit	Approx. Quantity	Chit	Amount	Approx	Unit	Amount	Approx. Quantity	Coit	Amount
8: Stree	8: Street Lighting										
8.01	Supply &Install Street Lighting	\$15,000.00	201.78	No.	\$3,026,700	95.58	1	\$1,433,700	233.64	No.	\$3,504,600
8.02	Signifization	\$180,000.00	2	No.	\$360,000			\$540,000		3 No.	\$540,000
8.03	Relocate McKenny Signilization	\$100,000.00	0	No.	So	0.5	No.	\$50,000	0.5	S No.	\$50,000
		Total Part 8:		E VALUE	\$3,386,700	3		\$2,023,700			\$4,094,600
: Miso	9: Miscellaneous						1				
9.01	Coconut ECB - NAG C125	12.00	13680	m3	\$164,160	6480	"m	\$77.760	15840	2	\$190.080
	Georidge	50.00	380	ε	\$19,000		E	89,000		Ε	\$22,000
		Total Part 9:			\$183,160			\$86,760			\$212,080
0: Lan	10: Land Costs										
10.01	10.01 Land North of Villeneuve	\$3,610,000.00	0	No.	S		O No.	0\$		1 No.	\$3,610,000
		Total Part 10:			0\$			\$0			\$3,610,000
11.01	11.01 Relocation Cost at Giroux	\$100,000.00	0	No.	So	0.5	No.	\$50,000		0.5 No.	\$50,000
11.01	Relocation Cost at Giroux	\$100,000,00	0	No.	05		No	\$50,000			\$50,000
1.02	11.02 Relocation Cost at Riel Pond	\$40,000.00	-	No	\$40,000		O No	80		O No.	80
		Total Part 11:		1	\$40,000		1	\$50,000			\$50,000
	Cost Summary			Stage I	-		Stage II	le II		Stage III Expanded	xpanded
	4. Steem Course & Projecto				62 260 743			64 504 467			000 000 00
	2. Democrafe				6246 066	dus		6469 646			620,000,000
	3. Farthworks				614 283 509			ER 755 873			E46 628 900
	4: Concrete And Pavement Structure				\$33,280,497			\$15.764.446			£38 535 313
	5: Bridge Structures				\$22,550,000			\$15,807,200			\$18,750,000
	6: Pavement Markings and Signing - Supply and Install	and Install			\$3,047,600			\$1,443,600			\$3,528,800
	7: Noise Attenuation				\$0			\$1,591,800			\$3,714,200
	8: Street Lighting				\$3,386,700	Udent		\$2,023,700			\$4,094,600
	9: Miscellaneous				\$183,160			\$86,760			\$212,080
	10: Land Costs				\$0			S			\$3,610,000
	11: Alta Link Refocates				\$40,000			\$50,000			\$50,000
		Subtotal:			\$80,477,175			\$45,288,714			\$93,324,613
	Mob & Demob		2%		\$4,023,859	2420		\$2,264,436			\$4,485,731
	Contingency		15%		\$12,071,576	line.		\$6,793,307			\$13,998,692
	Engineering		10%		\$8,047,717			\$4,528,871			\$8,971,461
	Total Preliminary Ro	Roadway Estimate:			\$104,620,327			\$58,875,329			\$120,780,497
					-		l				The state of the s

3.2 Widen from Four to Six Lanes

An additional lane is added to the outside in both directions in this stage. Additional work includes:

- SB lanes shift across Sturgeon River (road removal and construction)
- Curb and gutter removal and construction
- Drainage CB lead extension and CB removal and replacement
- Widen road pavement structure
- Riel Pond modifications (Rip Rap removal, outfall extensions, etc.)
- Existing street light wire remove and replace (east side)
- Sturgeon bridge widening
- Grading for widening and fill through pond.

The following table identifies additional costs to expand to a 6-lane cross-section.

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario IV 6 Lane Stage (Adding North Bound and South Bound Outer Lanes) From 137 Avenue to Station 14+600

			Stage	1		Stage II	==	St	age III Ex	panded
No. Description	Unit	Approx.	Unit	Amount	Approx.	Chrit	Amount	Approx.	Unit	Amont

1: Storm Sewar & Drainage											
CARCON CONTRACTOR CONT											
1.01 900mm Catch Basin		\$5,800.00	36.1	No.	\$209,380	17.1	No.	\$99,180	41.8	No.	\$242,440
1.02 300mm Class IV Concrete C	Catchbasin Lead	\$105.00	114	Ε	\$11,970	22	ε	\$5,670	132	ε	\$13,860
1.03 1500mm x 3000mm Precast Box C	t Box Culvert Section	\$15,000.00	2.28	No.	\$34,200	1.08	No.	\$16,200	2.64	No.	\$39,600
1.04 Extend 300mm Pipe & Outfalls	falls	\$6,000.00	1.14	No.	\$6,840	0.54	No.	\$3,240	1.32	No.	\$7,920
1.05 Extend 600mm Pipe & Outfal	fall	\$7,500.00	0.38	No.	\$2,850	0.18	No.	\$1,350	0.44	No.	\$3,300
1.06 Remove CB and Leads		\$4,500.00	36.1	No.	\$162,450	17.1	No.	\$76,950	0 41.8	No	\$188,100
		Total Part 1:			\$427,690			\$202,590	0		\$495,220

Ear	Z: Earthworks										
2.01	Common Excavation (5+300 to 7+600)	\$30.00	10450	m3	\$313,500	4950	m3	\$148,500	12100	m3	\$363,000
2.02	Strip & Stockpile Topsoil Station (5+300 to 7+600)	\$30.00	3541.6	m3	\$106,248	1677.6	m3	\$50,328	4100.8	m3	\$123,024
2.03	Common Excavation (7+600 to 10+000)	\$30.00	9310	m3	\$279,300	4410	m3	\$132,300	10780	m3	\$323,400
2.04	Common Excavation from (7+600 to 10+000) to (7+000 to 5+000)	\$30.00	5130	m3	\$153,900	2430	m3	\$72,900	5940	m3	\$178,200
2.05	Common Excavation Offsite (7+600 to 10+000)	\$45.00	3040	m3	\$136,800	1440	m3	\$64,800	3520	m3	\$158,400
2.06	2.06 Strip & Stockpile Topsoil Station (7+600 to 10+000)	\$30.00	3860.8	m3	\$115,824	1828.8	m3	\$54,864	4470.4	m3	\$134,112
2.07	Common Excavation Offsite (10+000 to 13+300)	\$45.00	31160	m3	\$1,402,200	14760	m3	\$664,200	36080	m3	\$1,623,600
2.08	Strip & Stockpile Topsoil Station (10+000 to 13+300)	\$30.00	6916	m3	\$207,480	3276	m3	\$98,280	8008	m3	\$240,240
5.09	Place 150mm Topsoil	\$3.00	7919.2	m ₂	\$23,758	3751.2	m ²	\$11,254	9169.6	m ²	\$27,509
2.10	2.10 Seeding	\$1.50	7919.2	m _s	\$11,879	3751.2	m ₂	\$5,627	9169.6	m ²	\$13,754
		Total Part 2:			\$2,750,888	Name of the last		\$1,303,052			\$3,185,239

3: Кеп	ovals										
3.01	Remove Curb and Gutter (Includes Sawcut)	\$35.00	4,848.8	E	\$169,708	2296.8	ε	\$80,388 5,614.4	5,614.4	8	\$196,504
3.02	Remove and Replace Rock Rip Rap	\$110,000.00	0.38	No	\$41,800	0.18	No	\$19,800	0.4	No	\$48,400
		Total Part 3:			\$211,508			\$100,188			\$244,904

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario IV 6 Lane Stage (Adding North Bound and South Bound Outer Lanes) From 137 Avenue to Station 14+600

Unit Approx. Approx.			Stage	10		Stage II	II o	S	Stage III E	xpanded
		Approx.			Approx.			Approx.		- 0011100

ON HIGH	Toold Deep Control	200	Cooliny Our	1110	NIIO OIL	Codinity Office	1100	Amount	Coamury	Out	Amount
4: Roa	4: Roadways and Concrete - New Construction										
4.01	Install Semi Mountable Curb	\$175.00	5,304.8	ε	\$928,340	2512.8	ε	\$439,740	6,142.4	ε	\$1,074,920
4.02	300mm Cement Stabilized Subgrade	\$27.00	42,134.4	m ²	\$1,137,629	19958.4	m ²	\$538,877	7 48,787.2	m ₂	\$1,317,254
4.03	1000mm Bottom Ash (Includes Geotextile)	\$70.00	7,866.0	m ₃	\$550,620	3726.0	m _s	\$260,820		°E	\$637,560
4.04	400mm of 20mm Granular Base Course	\$66.00	32,216.4	m ²	\$2,126,282	15260.4	m ₂	\$1,007,186	37,303.2	m _s	\$2,462,011
4.05	180mm of 25mm Asphalt Base	\$83.00	32,216.4	m ²	\$2,673,961	15260.4	m ²	\$1,266,613	3 37,303.2	m ²	\$3,096,166
4.06	50mm of 12.5mm Asphalt Surface	\$28.00	32,216.4	m _s	\$902,059	15260.4	m ²	\$427,29	\$427,291 37,303.2	m ²	\$1,044,490
		Total Part 4:			\$8,318,892			\$3,940,528	8		\$9,632,401

5: Sturgeon River Bridge					100				
5.01 Sturgeon River Bridge Widening	\$7,600,000.00	+	No.	\$7,600,000	O No.	0\$	0	No.	80
	Total Part 5:			\$7,600,000		\$0			\$0

\$8,800			\$3,600			\$7,600			Total Part 6:	
\$8.800	km	4.4	\$3,600	km	1.8	\$7,600	ry.	3.8	\$2,000.00	Roadway Lines Supply and Paint and painting directional dividing and 2 edge lines)

6: Pavement Markings and Signing - Supply and Install

\$1,302,400	00	\$532,800		\$1,124,800	Language Company		Total Part 7:	
No. \$1,302,400	162.8	\$532,800	.0N 9.99	\$1,124,800	No.	140.6	\$8,000.00	Remove and Relocate Streetlight Standards
No. \$1,302,400		\$532,80	. No.	\$1,124,800	No.	140.6	\$8,000.00	ocate Streetlight Standards

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario IV 6 Lane Stage (Adding North Bound and South Bound Outer Lanes) From 137 Avenue to Station 14+600

			Stage			Stage II	=	St	age III Ex	panded
Description	Unit	Approx.	-	Amount	Approx.	1,000	American	Approx.	2	ļ

Cost Summary	Stage I	Stage II	Stage III Expanded
	0.00000000	-	
1: Storm Sewar & Drainage	\$427,690	\$202,590	\$495,220
2: Earthworks	\$2,750,888	\$1,303,052	\$3,185,239
3: Removals	\$211,508	\$100,188	\$244,904
4: Roadways and Concrete - New Construction	\$8,318,892	\$3,940,528	\$9,632,401
5: Sturgeon River Bridge	\$7,600,000	0\$	\$0
6: Pavement Markings and Signing - Supply and Install	\$7,600	\$3,600	\$8,800
7: Street Lighting	\$1,124,800	\$532,800	\$1,302,400
Subtotal:	\$20,441,378	\$6,082,758	\$14,868,964
Mob & Demob	\$1,022,069	\$304,138	\$743,448
Contingency	15% \$3,066,207	\$912,414	\$2,230,345
Engineering	10% \$2,044,138	\$608,276	\$1,486,896
Total Preliminary Roadway Estimate:	\$26,573,791	\$7,907,585	\$19,329,653

3.3 Widening from Six to Eight-Lanes

An additional lane is added to the inside in both directions in this stage. Additional work includes:

- > Curb and gutter removal
- New Jersey Barrier and asphalt swale
- Drainage CB lead extension and CB removal and replacement
- Widen road pavement structure
- Adding double davits in centre barrier
- > Sturgeon bridge widening
- Grading for widening.

The following table identifies additional costs to expand to an 8-lane cross-section.

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario V 8 Lane Stage (Add Northbound and Southbound Median Lanes) From 137 Avenue to Station 14+600

				Sta	Stage !		Stage II	- 1	Sta	age III Ex	Stage III Expanded
Item No.	Description	Unit	Approx. Quantity Unit	Chit	Amount	Approx. Quantity Unit	Unit	Amount	Approx. Quantity	Unit	Amount
1: Stor	1: Storm Sewar & Drainage										
1.01	1200mm Catch Basin Manhole	\$3,700.00	34.96	No.	\$129,352		No.	\$61,272	40.48	No.	\$149.776
1.02		\$5,000.00	34.96	No.	\$174,800	16.56	No	\$82,800		oN.	\$202.400
1.03		\$105.00	114	E	\$11,970		ε	\$5,670	1	æ	\$13,860
		Total Part 1:			\$316,122			\$149,742		П	\$366,036
: Ren	2: Removals										
2.01	Remove Curb and Gutter	\$35.00	4,955	ш	\$173,432	2,347	E	\$82,152	5,738	ε	\$200,816
		Total Part 2:		- 1	\$173,432			\$82,152			\$200,816
Eart	3: Earthworks										
3.01	Common Excavation Offsite (5+300 to 7+600)	\$45.00	13351	m3	\$600,791	0	m3	SO	0	m3	\$0
3.02	Strip & Stockpile Topsoil Station (5+300 to 7+600)	\$30.00	3.262	m3	\$97.860	0	m3	S	0	m3	OS.
3.03	Common Excavation Offsite (7+600 to 10+000)	\$45.00	0	m3	80	23	m3	\$1,042,682		m3	\$0
3.04	Strip & Stockpile Topsoil Station (7+600 to 10+000)	\$30.00	0	m3	80	3,556	33	\$106,680	0	т3	S
3.05	Common Excavation Offsite (10+000 to 13+300)	\$45.00	0	m3	SO		m3	\$287.820	42	m3	\$1,926,180
3.06	Strip & Stockpile Topsoil Station (10+000 to 13+300)	\$30.00	0	m3	80	828	m3	\$24,843	5,542	m3	\$166,257
3.07	Place 150mm topsoil	\$3.00	4,408	m ²	\$13,224	2,088	E E	\$6,264		mž	\$15,312
3.08	Seeding	\$1.50	4,408	m ²	\$6,612	2,088	m ²	\$3,132	5,104	"m	\$7,656
		Total Part 3:			\$718,487			\$1,471,421			\$2,115,405
: Roa	4: Roadways and Concrete - New Construction										
4.01	300mm Cement Stabilized Subgrade	\$27.00	31,114	m ²	\$840,089	14,738	m ²	\$397,937	36,027	E S	\$972,734
4.02	1000mm Bottom Ash	\$70.00	10,051	°E	\$703,570	4,761	m ²	\$333,270		m,	\$814,660
4.03	400mm of 20mm Granular Base Course	\$66.00	41,165	m _s	\$2,716,916	19,499	m ₂	\$1,286,960		~E	\$3,145,903
4.04	180mm of 25mm Asphalt Base	\$83.00	39,376	m ²	\$3,268,175	18,652	m,	\$1,548,083	45,593	m ²	\$3,784,202
4.05	50mm of 12.5mm Asphalt Surface	\$28.00	39,376	m ²	\$1,102,517	18,652	m ²	\$522,245	45,593	m ²	\$1,276,598
4.06	Install Jersey barrier in median	\$350.00	2,424	ε	\$848,540	1,148	Ε	\$401,940	2,807	Ε	\$982,520
		Total Part 4:			\$9,479,807			\$4,490,435			\$10,976,618

Preliminary Roadway Cost Estimate for Ray Gibbon Drive Scenario V 8 Lane Stage (Add Northbound and Southbound Median Lanes)

From 137 Avenue to Station 14+600

				St	Stage I		Stage II		St	age III E	Stage III Expanded
Item No.	Description	Unit	Approx. Quantity	Unit	Amount	Approx. Quantity Unit	Unit	Amount	Approx. Quantity Unit	Chit	Amount
5: Stun	5: Sturgeon River Bridge										
5.01	Sturgeon River Bridge Modification	\$3,600,000.00		No.	\$3,600,000	0	No.	\$0	0	No	So
		Total Part 5:		П	\$3,600,000			\$0		П	\$0
6: Pave	6: Pavement Markings and Signing - Supply and Install	Iall		a							
6.01	Roadway Lines Supply and Paint and painting (directional dividing and 2 edge lines)	\$2,000.00	3.8	¥	\$7,600	1.8	Ē	\$3,600	4.4	Ě	\$8,800
		Total Part 6:			\$7,600		П	\$3,600		П	\$8,800
7: Street	7: Street Lighting										
7.01	Supply & Install Double Davit Lighting in Center Median	\$20,000.00	71.44	Š	\$1,428,800	33.84	Š	\$676,800	82.72	No.	\$1,654,400
		Total Part 7:			\$1,428,800			\$676,800		П	\$1,654,400
	Cost Summary		V a	St	Stage I		Stage II	11 0	Sta	ige III E	Stage III Expanded
	1: Storm Sewar & Drainage 2: Removals 3: Earthworks 4: Roadways and Concrete - New Construction 5: Sturgeon River Bridge 6: Pavement Markings and Signing - Supply and Install 7: Street Lighting	ion and Install Subtotal:	26		\$316,122 \$173,432 \$718,487 \$9,479,807 \$3,600,000 \$7,600 \$1,428,800 \$15,724,247			\$149,742 \$82,152 \$1,471,421 \$4,490,435 \$0 \$3,600 \$6,874,149			\$366,036 \$200,816 \$2,115,405 \$10,976,618 \$0 \$1,654,400 \$1,654,400 \$15,322,075
	Contingency Engineering		15%		\$2,358,637			\$1,031,122			\$2,298,311
	Total Preliminary	Roadway Estimate:			\$20,441,521			\$8,936,394			\$19,918,698

Appendix I Mass Haul Diagram

Engineering and Land Services

Free Haul

St. Albert

Project

Ray Gibbon Drive

Masshaul Diagram Functional Planning Study

Figure No. 12436 MH 01

Over Haul

E.H.

Appendix J Cross Sections

SCALE 1:125 1 Om 0 1.25m 2.5m

Project Ray Gibbon Drive FPS

137 Avenue Detailed Cross Sections

NOTE:

THE PROPOSED WALL HEIGHT IS BASED ON THE GROUND ELEVATIONS PROVIDED TO ISL ON SEPTEMBER 4, 2008.

Ray Gibbon Drive FPS

137 Avenue Detailed Cross Sections

Figure No. E

THE PROPOSED WALL HEIGHT IS BASED ON THE GROUND ELEVATIONS PROVIDED TO ISL ON SEPTEMBER 4, 2008.

Northbound Ramp Detailed Cross Sections

Figure No.

Ray Gibbon Drive FPS

Northbound Ramp Detailed Cross Sections

Figure No.

NOTE:

THE PROPOSED WALL HEIGHT IS BASED ON THE GROUND ELEVATIONS PROVIDED TO ISL ON SEPTEMBER 4, 2008.

Project Ray Gibbon Drive FPS

Northbound Ramp Detailed Cross Sections

Figure No.

THE PROPOSED WALL HEIGHT IS BASED ON THE GROUND ELEVATIONS PROVIDED TO ISL ON SEPTEMBER 4, 2008.

Ray Gibbon Drive FPS

Northbound Ramp Detailed Cross Sections

Figure No. Exh

SCALE 1125 10m 0 125m 2.5m

Project Ray Gibbon Drive FPS

Ray Gibbon Drive Detailed Cross Sections

5CALE 1:126 1.0m 0 1.25m ;

Project Ray Gibbon Drive FPS

Ray Gibbon Drive Detailed Cross Sections

Figure No.

Exhibit DX08

NOTE:
THE PROPOSED WALL HEIGHT IS BASED ON THE GROUND ELEVATIONS PROVIDED TO ISL ON SEPTEMBER 4, 2008.

Project Ray Gibbon Drive

Functional Planning Study Cross-sections

Figure No.

Appendix K Detailed Right-of-Way Requests

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE PLAN 082 8697 - BLK. 2 - LOT B (NE29/SE29 - TWP 53-25-W4)

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE POWER LINE R/W - PLAN 2648 MC Within E29 - TWP 53-25-W4

PLAN SHOWING ADDITIONAL
RIGHT-OF-WAY REQUIREMENTS FOR
PROVINCIAL FREEWAY STANDARD FOR
RAY GIBBON DRIVE
SE29 - TWP 53-25-W4
(Land Required from the City of St. Albert)

SCALE: 1:5000 February 2009

seway/02_defileg/02s_project/Exhibits/RGO_JOP_Land_Requin

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE NE29 - TWP 53-25-W4

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE LOT A - BLOCK 1 - PLAN 082 8697

PLAN SHOWING ADDITIONAL
RIGHT-OF-WAY REQUIREMENTS FOR
PROVINCIAL FREEWAY STANDARD FOR
RAY GIBBON DRIVE
LOT A - BLOCK 1 - PLAN 082 8697
(Excluding Proposed Hole's Property)

SCALE: 1:5000 February 2009

seway 102_dealthig 102a_project (Exhibits 18CD_10P_Land_Requir

ŧ

Cheer

2009 - 7142am

Peb 05.

PLAN SHOWING ADDITIONAL
RIGHT-OF-WAY REQUIREMENTS FOR
PROVINCIAL FREEWAY STANDARD FOR
RAY GIBBON DRIVE
LOT A - BLOCK 1 - PLAN 082 8697
(Portion for Proposed Hole's Property)

SCALE: 1:5000 February 2009

Cheer.

2009 - 7:42am

1/12400/12436_5tAlbert

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE NW29 - TWP 53-25-W4

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE RIVER LOT 55 - ST. ALBERT SETTLEMENT

SCALE: 1:5000 February 2009

seway 102_drafting 102a_project (Exhibits 18GD_IOP_Land_Requi

Feb 05, 2009 - 8-31am User:

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE LOT 1 - PLAN 842 0559

SCALE: 1:5000 February 2009

Feb 05, 2009 - 7:42am Usern

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE LOT H - PLAN 6525 NY

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE PARCEL B - PLAN 3032 RS

E\12400\12436_StAber

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE PARCEL A - PLAN 3032 RS

RAY GIBBON DRIVE RIVER LOT 16 - ST. ALBERT SETTLEMENT (Portion S. of Meadowview Road)

SCALE: 1:5000 February 2009

F\12400\12436_5tAlbert

Engineering and Land Services

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY
REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD
FOR
RAY GIBBON DRIVE
RIVER LOT 16 - ST. ALBERT SETTLEMENT

RIVER LOT 16 - ST. ALBERT SETTLEMENT (Portion Between Meadowview Road and CNR Right-of-Way)

SCALE: 1:5000 February 2009

seway 102_drafting 102a_project (Schibits VRCD_JOP_Land_Requi

đ

User

95

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE BLOCK C - PLAN 1798 AN

PLAN SHOWING ADDITIONAL
RIGHT-OF-WAY REQUIREMENTS FOR
PROVINCIAL FREEWAY STANDARD FOR
RAY GIBBON DRIVE
RIVER LOT 16 - ST. ALBERT SETTLEMENT
(Portion N. of CNR Right-of-Way)

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE RIVER LOT 16 - ST. ALBERT SETTLEMENT (FOR TEMPORARY CN DETOUR)

SCALE: 1:5000 February 2009

erway/02_dafting/02a_project/Exhibits/RCD_IOP_Land_Requirements_2009.dwg

E\12400\12436_5tAlbert

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE LOT 4 - PLAN 992 6483

SCALE: 1:5000 February 2009

Feb 05, 2009 - 8.09am Uher:

E\12400\12436_\$tABen

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE BLOCK 1B - PLAN 922 2031

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE NW6 - TWP 54-25-W4

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE LOT A - PLAN 932 1471

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE NE6 - TWP 54-25-W4

RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE SW7 - TWP 54-25-W4

1\12400\12436_5tAlber

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE NW7 - TWP 54-25-W4

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE NE12 - TWP 54-26-W4

E\12400\12436_3UABert

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE BLOCK 1 - PLAN 952 1983

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE NE7 - TWP 54-25-W4

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE SW18 - TWP 54-25-W4

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE LOT 1 - BLOCK 1 - PLAN 042 6146

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE LOT 2 - BLOCK 1 - PLAN 042 6146

SCALE: 1:5000 February 2009

E\12400\12436_StAlber

PLAN SHOWING ADDITIONAL
RIGHT-OF-WAY REQUIREMENTS FOR
PROVINCIAL FREEWAY STANDARD FOR
RAY GIBBON DRIVE
LOT 1 - BLOCK 2 - PLAN 052 5581

ISL Engineering and Land Services

P\12400\12436_5tAlbert

PLAN SHOWING ADDITIONAL
RIGHT-OF-WAY REQUIREMENTS FOR
PROVINCIAL FREEWAY STANDARD FOR
RAY GIBBON DRIVE
POWER SUB-STATION R/W
(SE18 - TWP 54-25-W4)

SCALE: 1:5000 February 2009

PLAN SHOWING ADDITIONAL RIGHT-OF-WAY REQUIREMENTS FOR PROVINCIAL FREEWAY STANDARD FOR RAY GIBBON DRIVE SE18 - TWP 54-25-W4

SCALE: 1:5000 February 2009

10

Appendix L Auto Turn Templates

Appendix M Retaining Wall Profile near 137 Avenue

RAY GIBBON DRIVE FPS

RETAINING WALL PROFILE N.E. QUADRANT 137 AVENUE

LOOKING SOUTHWEST FROM SOUTH RIEL ASP

100

Appendix N

Provincial Operations and Development Control Plan

